Abstract
The conditional matching preclusion number of a graph is the minimum number of edges, whose deletion results in a graph with no isolated vertices that has neither perfect matchings nor almost-perfect matchings. Any such optimal set is called an optimally conditional matching preclusion set. The conditional matching preclusion number is one of the parameters to measure the robustness of interconnection networks in the event of edge failure. The star graph and the bubble-sort graph are one of the attractive underlying topologies in a multiprocessor system. In this paper, we investigate a class of Cayley graphs which are combined with the star graph and the bubble-sort graph, and give all the optimally conditional matching preclusion sets for this class of graphs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akers, S.B., Krishnamurthy, B.: A group-theoretic model for symmetric interconnection networks. IEEE Trans. Comput. 38(4), 555–566 (1989)
Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, New York (2007)
Brigham, R.C., Harary, F., Violin, E.C., Yellen, J.: Perfect-matching preclusion. Congr. Numerantium 174, 185–192 (2005)
Cheng, E., Lipták, L.: Matching preclusion for some interconnection networks. Networks 50(2), 173–180 (2007)
Cheng, E., Lesniak, L., Lipman, M.J., Lipták, L.: Matching preclusion for alternating group graphs and their generalizations. Int. J. Found. Comput. Sci. 19(6), 1413–1437 (2008)
Cheng, E., Lesniak, L., Lipman, M.J., Lipták, L.: Conditional matching preclusion sets. Inf. Sci. 179(8), 1092–1101 (2009)
Cheng, E., Philip, H., Jia, R., Lipták, L.: Matching preclusion and conditional matching preclusion for bipartite interconnection networks II: cayley graphs generated by transposition trees and hyperstars. Networks 59, 357–364 (2012)
Cheng, E., Lipman, M.J., Lipták, L., Sherman, D.: Conditional matching preclusion for the arrangement graphs. Theor. Comput. Sci. 412, 6279–6289 (2011)
Cheng, E., Lipták, L., Hsu, L., Tan, J.J.M., Lin, C.: Conditional Matching Preclusion for the Star Graph, Ars Combinatoria (to appear)
Curran, S.J., Gallian, J.A.: Hamiltonian cycles and paths in cayley graphs and digraphs-a survey. Discrete Math. 156(1–3), 1–18 (1996)
Thomas, W.: Hungerford: Algebra. Springer-Verlag, New York (1974)
Li, H., Yang, W., Meng, J.: Fault-tolerant hamiltonian laceability of cayley graphs generated by transposition trees. Discrete Math. 312(21), 3087–3095 (2012)
Lovász, L., Plummer, M.D.: Matching Theory. Elsevier Science Publishing Company, New York (1986)
Park, J.-H.: Matching preclusion problem in restricted HL-graphs and recursive circulant G(2 m, 4). J. Kiss 35(2), 60–65 (2008)
Park, J.-H., Son, S.H.: Conditional matching preclusion for hypercube-like interconnection networks. Theor. Comput. Sci. 410, 2632–2640 (2009)
Wang, S., Wang, R., Lin, S., Li, J.: Matching Preclusion for k-ary n-cubes. Discrete Appl. Math. 158(18), 2066–2070 (2010)
Mujiangshan, W., Zhen, W., Shiying, W.: Conditional matching preclusion for bubble-sort graphs. J. Xinjiang Univ. 28(1), 23–35 (2011). (Natural Science Edition) (Chinese Series)
Wang, M., Yang, W., Wang, S.: Conditional matching preclusion number for the cayley graph on the symmetric group. Acta Mathematicae Applicatae Sinica 36(5), 813–820 (2013). (Chinese Series)
Wang, M., Yang, W., Wang, S.: Optimally conditional matching preclusion sets for a class of cayley graphs on the symmetric group. Chin. J. Eng. Math. 30(6), 901–910 (2013). (Chinese Series)
Acknowledgements
This work is supported by the National Science Foundation of China (61370001, U1304601)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Ren, Y., Wang, S. (2015). Conditional Matching Preclusion Sets for an Mixed-Graph of the Star Graph and the Bubble-Sort Graph. In: Huang, DS., Bevilacqua, V., Premaratne, P. (eds) Intelligent Computing Theories and Methodologies. ICIC 2015. Lecture Notes in Computer Science(), vol 9225. Springer, Cham. https://doi.org/10.1007/978-3-319-22180-9_63
Download citation
DOI: https://doi.org/10.1007/978-3-319-22180-9_63
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-22179-3
Online ISBN: 978-3-319-22180-9
eBook Packages: Computer ScienceComputer Science (R0)