Real-Time Human Action Recognition Using DMMs-Based LBP and EOH Features | SpringerLink
Skip to main content

Real-Time Human Action Recognition Using DMMs-Based LBP and EOH Features

  • Conference paper
  • First Online:
Intelligent Computing Theories and Methodologies (ICIC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9225))

Included in the following conference series:

Abstract

This paper proposes a new feature extraction scheme for the real-time human action recognition from depth video sequences. First, three Depth Motion Maps (DMMs) are formed from the depth video. Then, on top of these DMMs, the Local Binary Patterns (LBPs) are calculated within overlapping blocks to capture the local texture information, and the Edge Oriented Histograms (EOHs) are computed within non-overlapping blocks to extract dense shape features. Finally, to increase the discriminatory power, the DMMs-based LBP and EOH features are fused in a systematic way to get the so-called DLE features. The proposed DLE features are then fed into the l 2 -regularized Collaborative Representation Classifier (l 2 -CRC) to learn the model of human action. Experimental results on the publicly available Microsoft Research Action3D dataset demonstrate that the proposed approach achieves the state-of-the-art recognition performance without compromising the processing speed for all the key steps, and thus shows the suitability for real-time implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, C., Kehtarnavaz, N., Jafari, R.: A medication adherence monitoring system for pill bottles based on a wearable inertial sensor. In: Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. pp. 4983–4986 (2014)

    Google Scholar 

  2. Chen, C., Jafari, R., Kehtarnavaz, N.: Improving human action recognition using fusion of depth camera and inertial sensors. IEEE Trans. Hum.-Mach. Syst. 45(1), 51–61 (2015)

    Article  Google Scholar 

  3. Laptev, I.: On space-time interest points. Int. J. Comput. Vision 64(2/3), 107–123 (2005)

    Article  Google Scholar 

  4. Niebles, J., Wang, H., Fei-Fei, L.: Unsupervised learning of human action categories using spatial-temporal words. Int. J. Comput. Vision 79(3), 299–318 (2008)

    Article  Google Scholar 

  5. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kip- man, A., Blake, A.: Real-time human pose recognition in parts from single depth images. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1297–1304 (2011)

    Google Scholar 

  6. Microsoft: kinect for windows. http://www.microsoft.com/en-us/kinectforwindows/

  7. Chen, C., Liu, K., Kehtarnavaz, N.: Real-time human action recognition based on depth motion maps. J. Real-Time Image Process. (2013)

    Google Scholar 

  8. Li, W., Zhang, Z., Liu, Z.: Action recognition based on a bag of 3d Points. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 9–14 (2010)

    Google Scholar 

  9. Vieira, A., Nascimento, E., Oliveira, G., Liu, Z., Campos, M.: Space-time occupancy patterns for 3d action recognition from depth map sequences. In: Proceedings of Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, pp. 252–259 (2012)

    Google Scholar 

  10. Wang, J., Liu, Z., Chorowski, J., Chen, Z., Wu, Y.: Robust 3d action recognition with random occupancy patterns. In: Proceedings of European Conference on Computer Vision, pp. 872–885 (2012)

    Google Scholar 

  11. Yang, X., Zhang, C., Tian, Y.: Recognizing actions using depth motion maps-based histograms of oriented gradients. In: Proceedings of ACM International Conference on Multimedia, pp. 1057–1060 (2012)

    Google Scholar 

  12. Oreifej, O., Liu, Z.: Hon4d: histogram of oriented 4d normals for activity recognition from depth sequences. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 716–723 (2013)

    Google Scholar 

  13. Luo, J., Wang, W., Qi, H.: Spatio-temporal feature extraction and representation for RGB-D human action recognition. Pattern Recogn. Lett. 50, 139–148 (2014)

    Article  Google Scholar 

  14. Lu, C., Jia, J., Tang, C.K.: Range-sample depth feature for action recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 772–779 (2014)

    Google Scholar 

  15. Chen, C., Jafari, R., Kehtarnavaz, N.: Action recognition from depth sequences using depth motion maps-based local binary patterns. In: Proceedings of IEEE Winter Conference on Applications of Computer Vision, pp. 1092–1099 (2015)

    Google Scholar 

  16. Farhad, M., Jiang, Y., Ma, J.: Human action recognition based on DMMs, HOGs and Contourlet transform. In: Proceedings of IEEE International Conference on Multimedia Big Data, pp. 389–394 (2015)

    Google Scholar 

  17. Yang, X., Tian, Y.: Eigen joints-based action recognition using Naive-Bayes-Nearest-Neighbor. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 14–19 (2012)

    Google Scholar 

  18. Xia, L., Chen, C., Aggarwal, J.: View invariant human action recognition using histograms of 3d joints. In: Proceedings of Workshop on Human Activity Under- standing from 3D Data, pp. 20–27 (2012)

    Google Scholar 

  19. Wang, J., Liu, Z., Wu, Y., Yuan, J.: Mining actionlet ensemble for action recognition with depth cameras. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1290–1297 (2012)

    Google Scholar 

  20. Luo, J., Wang, W., Qi, H.: Group sparsity and geometry constrained dictionary learning for action recognition from depth maps. In: Proceedings of the 14th IEEE International Conference on Computer Vision, pp. 1809–1816 (2013)

    Google Scholar 

  21. Vemulapalli, R., Arrate, F., Chellappa, R.: Human action recognition by representing 3d human skeletons as points in a lie group. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 588–595 (2014)

    Google Scholar 

  22. Chaaraoui, A.A., Padilla-Lopez, J.R., Climent-Perez, P., Florez-Revuelta, F.: Evolutionary joint selection to improve human action recognition with RGB-D devices. Expert Syst. Appl. 41(3), 786–794 (2014)

    Article  Google Scholar 

  23. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture Classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  24. http://clickdamage.com/sourcecode/code/edgeOrientationHistogram.m

  25. Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T., Yan, S.: Sparse representation for computer vision and pattern recognition. Proc. IEEE 98(6), 1031–1044 (2010)

    Article  MATH  Google Scholar 

  26. Tikhonov, A., Arsenin, V.: Solutions of ill-posed problems. Math. Comput. 32(144), 1320–1322 (1978)

    Article  Google Scholar 

  27. Chen, C., Tramel, E.W., Fowler, J.E.: Compressed-sensing recovery of images and video using multi-hypothesis predictions. In: Proceedings of the 45th Asilomar Conference on signals, Systems, and Computers, pp. 1193–1198 (2011)

    Google Scholar 

  28. Chen, C., Li, W., Tramel, E.W., Fowler, J.E.: Reconstruction of hyperspectral imagery from random projections using multi-hypothesis prediction. IEEE Trans. Geosci. Remote Sens. 52(1), 365–374 (2014)

    Article  Google Scholar 

  29. Chen, C., Fowler, J.E.: Single-image Super-resolution Using Multi-hypothesis Prediction. In: Proceedings of the 46th Asilomar Conference on Signals, Systems, and Computers, pp. 608–612 (2012)

    Google Scholar 

  30. Golub, G., Hansen, P.C., O’Leary, D.: Tikhonov-regularization and total least squares. SIAM J. Matrix Anal. Appl. 21(1), 185–194 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

This work was supported by the Natural Science Foundation of China for Grant 61171138

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwen Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bulbul, M.F., Jiang, Y., Ma, J. (2015). Real-Time Human Action Recognition Using DMMs-Based LBP and EOH Features. In: Huang, DS., Bevilacqua, V., Premaratne, P. (eds) Intelligent Computing Theories and Methodologies. ICIC 2015. Lecture Notes in Computer Science(), vol 9225. Springer, Cham. https://doi.org/10.1007/978-3-319-22180-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22180-9_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22179-3

  • Online ISBN: 978-3-319-22180-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics