The Utilisation of Dynamic Neural Networks for Medical Data Classifications- Survey with Case Study | SpringerLink
Skip to main content

The Utilisation of Dynamic Neural Networks for Medical Data Classifications- Survey with Case Study

  • Conference paper
  • First Online:
Advanced Intelligent Computing Theories and Applications (ICIC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9227))

Included in the following conference series:

  • 3167 Accesses

Abstract

Various recurrent neural networks have been utilised for medical data analysis and classifications. In this paper, the ability of using dynamic neural network to medicine related problems has been examined. Furthermore, a survey on the use of recurrent neural network architectures in medical applications will be discussed. A case study using the Elman, the Jordan and Layer recurrent networks for the classifications of Uterine Electrohysterography signals for the prediction of term and preterm delivery for pregnant women are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arvind, R., Karthik, B., Sriraam, N., Kannan, J.K.: Automated detection of PD resting tremor using PSD with recurrent neural network classifier. In: 2010 International Conference on Advances in Recent Technologies in Communication and Computing, pp. 414–417 (2010). doi:10.1109/ARTCom.2010.33

  2. Baghamoradi, S., Naji, M., Aryadoost, H.: Evaluation of cepstral analysis of EHG signals to prediction of preterm labor. In: 18th Iranian Conference on Biomedical Engineering, pp. 1–3, Tehran, Iran (2011)

    Google Scholar 

  3. Chendeb, M., Khalil, M., Hewson, D., Duchêne, J.: Classification of non stationary signals using multiscale decomposition. J. Biomed. Sci. Eng. 03(02), 193–199 (2010). doi:10.4236/jbise.2010.32025

    Article  MATH  Google Scholar 

  4. Chung, J.R., Kwon, J., Choe, Y.: Evolution of recollection and prediction in neural networks. In: 2009 International Joint Conference on Neural Networks, pp. 571–577 (2009). doi:10.1109/IJCNN.2009.5179065

  5. Übeyli, E.D.: Recurrent neural networks employing Lyapunov exponents for analysis of ECG signals. Expert Syst. Appl. 37(2), 1192–1199 (2010). doi:10.1016/j.eswa.2009.06.022

    Article  Google Scholar 

  6. Fele-Žorž, G., Kavšek, G., Novak-Antolič, Z., Jager, F.: A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups. Med. Biol. Eng. Compu. 46(9), 911–922 (2008). doi:10.1007/s11517-008-0350-y

    Article  Google Scholar 

  7. Forney, E.M., Anderson, C.W.: Classification of EEG during imagined mental tasks by forecasting with Elman recurrent neural networks. In: The 2011 International Joint Conference on Neural Networks, pp. 2749–2755 (2011). doi:10.1109/IJCNN.2011.6033579

  8. Garfield, R.E., Maner, W.L., MacKay, L.B., Schlembach, D., Saade, G.R.: Comparing uterine electromyography activity of antepartum patients versus term labor patients. Am. J. Obstet. Gynecol. 193(1), 23–29 (2005). doi:10.1016/j.ajog.2005.01.050

    Article  Google Scholar 

  9. Guler, N., Ubeyli, E., Guler, I.: Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Syst. Appl. 29(3), 506–514 (2005). doi:10.1016/j.eswa.2005.04.011

    Article  Google Scholar 

  10. Haykin, S.: Neural Networks A comprehensive Foundation. Prentice Hall PTR, New Jersey (1998)

    Google Scholar 

  11. Ilbay, K., Übeyli, E. D., Ilbay, G., Budak, F.: A new application of recurrent neural networks for EMG-based diagnosis of carpal tunnel syndrome. In: Cardot, H. (ed.), Recurrent Neural Network for Temporal Data Processing. InTech (2011). doi:10.5772/631

  12. Koskela, T., Varsta, M., Heikkonen, J., Kaski, K.: Temporal sequence processing using recurrent SOM. In: Proceedings of the Second International Conference Knowledge-Based Intelligent Electronic Systems, pp. 21–23. IEEE, Adelaide. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=725861&tag=1. Accessed 1998

  13. Kumar, S.P., Sriraam, N., Benakop, P.G.: Automated detection of epileptic seizures using wavelet entropy feature with recurrent neural network classifier. In: TENCON 2008–2008 IEEE Region 10 Conference, pp. 1–5. IEEE, Hyderabad (2008). doi:10.1109/TENCON.2008.4766836

  14. Leman, H., Marque, C., Gondry, J.: Use of the electrohysterogram signal for characterization of contractions during pregnancy. IEEE Trans. Bio-med. Eng. 46(10), 1222–1229 (1999)

    Article  Google Scholar 

  15. Ling, S.H., Leung, F.H.F., Leung, K.F., Lam, H.K., Iu, H.H.C.: An improved GA based modified dynamic neural network for cantonese-digit speech recognition. In: Grimm, M., Korschel, K. (eds.) Robust Speech Recognition and Understanding, p. 460. I-Tech, Vienna (2007)

    Google Scholar 

  16. Liu, B., Wang, M., Yu, H., Yu, L., Liu, Z.: Study of feature classification methods in BCI based on neural networks. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, vol. 3, pp. 2932–2935. China (2005). doi:10.1109/IEMBS.2005.1617088

  17. Makarov, V.A., Song, Y., Velarde, M.G., Hübner, D., Cruse, H.: Elements for a general memory structure: properties of recurrent neural networks used to form situation models. Biol. Cybern. 98(5), 371–395 (2008). doi:10.1007/s00422-008-0221-5

    Article  MATH  Google Scholar 

  18. Marshall, J.: Regulation of activity in uterine smooth muscle. Physiol. Rev. Suppl. (1962)

    Google Scholar 

  19. Petrosian, A.A., Prokhorov, D.V., Schiffer, R.B.: Recurrent neural network based approach for early recognition of alzheimer ’ s disease in EEG. Clin. Neurophysiol. 112(8), 1378–1387 (2001)

    Article  Google Scholar 

  20. Physionet: Physionet (2011). http://physionet.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Fergus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hussain, A.J., Fergus, P., Al-Jumeily, D., Alaskar, H., Radi, N. (2015). The Utilisation of Dynamic Neural Networks for Medical Data Classifications- Survey with Case Study. In: Huang, DS., Han, K. (eds) Advanced Intelligent Computing Theories and Applications. ICIC 2015. Lecture Notes in Computer Science(), vol 9227. Springer, Cham. https://doi.org/10.1007/978-3-319-22053-6_80

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22053-6_80

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22052-9

  • Online ISBN: 978-3-319-22053-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics