Planning with Regression Analysis in Transaction Logic | SpringerLink
Skip to main content

Planning with Regression Analysis in Transaction Logic

  • Conference paper
  • First Online:
Web Reasoning and Rule Systems (RR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9209))

Included in the following conference series:

Abstract

Heuristic search is arguably the most successful paradigm in Automated Planning, which greatly improves the performance of planning strategies. However, adding heuristics usually leads to very complicated planning algorithms. In order to study different properties (e.g. completeness) of those complicated planning algorithms, it is important to use an appropriate formal language and framework. In this paper, we argue that Transaction Logic is just such a specification language, which lets one formally specify both the heuristics, the planning algorithm, and also facilitates the discovery of more general and more efficient algorithms. To illustrate, we take the well-known regression analysis mechanism and show that Transaction Logic lets one specify the concept of regression analysis easily and thus express \(\textit{RSTRIPS}\), a classical and very complicated planning algorithm based on regression analysis. Moreover, we show that extensions to that algorithm that allow indirect effects and action ramification are obtained almost for free. Finally, a compact and clear logical formulation of the algorithm lets us prove the completeness of \(\textit{RSTRIPS}\)—a result that, to the best of our knowledge, has not been known before.

This work was supported, in part, by the NSF grant 0964196.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 4576
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 5720
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Requiring all variables in \(Pre_{\alpha }\) to occur in \(\{X_1,...,X_n\}\) is not essential: we can easily extend our framework and consider the extra variables to be existentially quantified.

  2. 2.

    We simply write \( \mathfrak {R}(\alpha ,\ell ) \) whenever L just contains a single literal \( \ell \).

  3. 3.

    http://ewl.cewit.stonybrook.edu/planning/RSTRIPS-TR-full.pdf.

  4. 4.

    http://ewl.cewit.stonybrook.edu/planning/RSTRIPS-TR-full.pdf.

  5. 5.

    http://ewl.cewit.stonybrook.edu/planning/RSTRIPS-TR-full.pdf.

  6. 6.

    http://ewl.cewit.stonybrook.edu/planning/RSTRIPS-TR-full.pdf.

References

  1. Bacchus, F., Kabanza, F.: Using temporal logics to express search control knowledge for planning. Artif. Intell. 116(12), 123–191 (2000). http://www.sciencedirect.com/science/article/pii/S0004370299000715

    Article  MathSciNet  Google Scholar 

  2. Basseda, R., Kifer, M., Bonner, A.J.: Planning with transaction logic. In: Kontchakov, R., Mugnier, M.-L. (eds.) RR 2014. LNCS, vol. 8741, pp. 29–44. Springer, Heidelberg (2014)

    Google Scholar 

  3. Bonet, B., van den Briel, M.: Flow-based heuristics for optimal planning: landmarks and merges. In: Chien, S., Do, M.B., Fern, A., Ruml, W. (eds.) Proceedings of the Twenty Fourth International Conference on Automated Planning and Scheduling, ICAPS 2014. AAAI, Portsmouth (2014). http://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/view/7933

    Google Scholar 

  4. Bonet, B., Geffner, H.: Planning as heuristic search. Artif. Intell. 129(1–2), 5–33 (2001). http://dx.doi.org/10.1016/S0004-3702(01)00108-4

    Article  MathSciNet  Google Scholar 

  5. Bonner, A., Kifer, M.: Transaction logic programming. In: International Conference on Logic Programming, pp. 257–282. MIT Press, Budaspest (1993)

    Google Scholar 

  6. Bonner, A., Kifer, M.: Applications of transaction logic to knowledgerepresentation. In: Gabbay, D.M., Ohlbach, H.J. (eds.) ICTL 1994. LNCS, vol. 827, pp. 67–81. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  7. Bonner, A., Kifer, M.: Transaction logic programming (or a logic of declarative and procedural knowledge). Technical report CSRI-323, University of Toronto (November 1995). http://www.cs.toronto.edu/~bonner/transaction-logic.html

  8. Bonner, A., Kifer, M.: Concurrency and communication in transaction logic. In: Joint International Conference and Symposium on Logic Programming, pp. 142–156. MIT Press, Bonn, September 1996

    Google Scholar 

  9. Bonner, A., Kifer, M.: A logic for programming database transactions. In: Chomicki, J., Saake, G. (eds.) Logics for Databases and Information Systems, pp. 117–166. Kluwer Academic Publishers, Norwell (1998). Chap. 5

    Chapter  Google Scholar 

  10. Bonner, A.J., Kifer, M.: An overview of transaction logic. Theo. Comput. Sci. 133, 205–265 (1994)

    Article  MathSciNet  Google Scholar 

  11. Doherty, P., Kvarnström, J., Heintz, F.: A temporal logic-based planning and execution monitoring framework for unmanned aircraft systems. Auton. Agent. Multi-Agent Syst. 19(3), 332–377 (2009). http://dx.doi.org/10.1007/s10458-009-9079-8

    Article  Google Scholar 

  12. Fikes, R.E., Nilsson, N.J.: STRIPS: A new approach to the application of theorem proving to problem solving. Artif. Intell. 2(34), 189–208 (1971)

    Article  Google Scholar 

  13. Gerevini, A., Schubert, L.: Accelerating partial-order planners: some techniques for effective search control and pruning. J. Artif. Intell. Res. (JAIR) 5, 95–137 (1996)

    Google Scholar 

  14. Giunchiglia, E., Lifschitz, V.: Dependent fluents. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pp. 1964–1969 (1995)

    Google Scholar 

  15. Joslin, D., Pollack, M.E.: Least-cost flaw repair: A plan refinement strategy for partial-order planning. In: Proceedings of the Twelth National Conference on Artificial Intelligence, vol. 2, pp. 1004–1009. American Association for Artificial Intelligence, AAAI 1994, Menlo Park (1994). http://dl.acm.org/citation.cfm?id=199480.199515

  16. Kahramanogullari, O.: Towards planning as concurrency. In: Hamza, M.H. (ed.) Artificial Intelligence and Applications, pp. 387–393. IASTED/ACTA Press, Orlando (2005)

    Google Scholar 

  17. Kahramanoğulları, O.: On linear logic planning and concurrency. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 250–262. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Lin, F.: Applications of the situation calculus to formalizing control and strategic information: the prolog cut operator. Artif. Intell. 103(1–2), 273–294 (1998). http://dx.doi.org/10.1016/S0004-3702(98)00054-X

    Article  Google Scholar 

  19. Lloyd, J.W.: Foundations of Logic Programming. Springer-Verlag, New York (1984)

    Book  Google Scholar 

  20. Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory & Practice. Morgan Kaufmann Publishers Inc., San Francisco (2004)

    Google Scholar 

  21. Nguyen, T.A., Kambhampati, S.: A heuristic approach to planning with incomplete STRIPS action models. In: Chien, S., Do, M.B., Fern, A., Ruml, W. (eds.) ICAPS 2014. AAAI, Portsmouth (2014). http://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/view/7919

    Google Scholar 

  22. de Nijs, F., Klos, T.: A novel priority rule heuristic: learning from justification. In: Chien, S., Do, M.B., Fern, A., Ruml, W. (eds.) ICAPS 2014. AAAI, Portsmouth (2014). http://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/view/7935

    Google Scholar 

  23. Nilsson, N.: Principles of Artificial Intelligence. Tioga Publication Co., Paolo Alto (1980)

    Google Scholar 

  24. Pollock, J.L.: The logical foundations of goal-regression planning in autonomous agents. Artif. Intell. 106(2), 267–334 (1998). http://dx.doi.org/10.1016/S0004-3702(98)00100-3

    Article  MathSciNet  Google Scholar 

  25. Pommerening, F., Röger, G., Helmert, M., Bonet, B.: Lp-based heuristics for cost-optimal planning. In: Chien, S., Do, M.B., Fern, A., Ruml, W. (eds.) ICAPS 2014. AAAI, Portsmouth (2014). http://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/view/7892

    Google Scholar 

  26. Reiter, R.: Knowledge in Action: Logical Foundations for Describing and Implementing Dynamical Systems. MIT Press, Cambridge (2001)

    Google Scholar 

  27. Rossi, F. (ed.) Proceedings of the 23rd International Joint Conference on Artificial Intelligence, IJCAI 2013, Beijing, China, August 3–9, 2013. IJCAI/AAAI (2013)

    Google Scholar 

  28. Shoham, Y.: Artificial Intelligence Techniques in Prolog. Morgan Kaufmann, New York (2014)

    Google Scholar 

  29. Sierra-Santibáñez, J.: Declarative formalization of strategies for action selection: applications to planning. In: Brewka, G., Moniz Pereira, L., Ojeda-Aciego, M., de Guzmán, I.P. (eds.) JELIA 2000. LNCS (LNAI), vol. 1919, p. 133. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  30. Srivastava, S., Immerman, N., Zilberstein, S., Zhang, T.: Directed search for generalized plans using classical planners. In: Proceedings of the 21st International Conference on Automated Planning and Scheduling (ICAPS-2011). AAAI, June 2011

    Google Scholar 

Download references

Acknowledgments

We are thankful to the anonymous referees for their thorough reviews and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Basseda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Basseda, R., Kifer, M. (2015). Planning with Regression Analysis in Transaction Logic. In: ten Cate, B., Mileo, A. (eds) Web Reasoning and Rule Systems. RR 2015. Lecture Notes in Computer Science(), vol 9209. Springer, Cham. https://doi.org/10.1007/978-3-319-22002-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22002-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22001-7

  • Online ISBN: 978-3-319-22002-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics