Data Consistency: Toward a Terminological Clarification | SpringerLink
Skip to main content

Data Consistency: Toward a Terminological Clarification

  • Conference paper
  • First Online:
Computational Science and Its Applications -- ICCSA 2015 (ICCSA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9159))

Included in the following conference series:

Abstract

‘Consistency’ is an ‘inconsistency’ are ubiquitous term in data engineering. Its relevance to quality is obvious, since ‘consistency’ is a commonplace dimension of data quality. However, connotations are vague or ambiguous. In this paper, we address semantic consistency, transaction consistency, replication consistency, eventual consistency and the new notion of partial consistency in databases. We characterize their distinguishing properties, and also address their differences, interactions and interdependencies. Partial consistency is an entry door to living with inconsistency, which is an ineludible necessity in the age of big data.

H. Decker and F.D. Muñoz—supported by the Spanish MINECO grant TIN 2012-37719-C03-01.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abadi, D.: Consistency tradeoffs in modern distributed database system design: Cap is only part of the story. Computer 45(2), 37–42 (2012)

    Article  MathSciNet  Google Scholar 

  2. Bailis, P. (2015). http://www.bailis.org/blog/

  3. Bailis, P., Ghodsi, A.: Eventual consistency today: limitations, extensions, and beyond. ACM Queue, 11(3) (2013)

    Google Scholar 

  4. Balegas, V., Duarte, S., Ferreira, C., Rodrigues, R., Preguica, N., Najafzadeh, M., Shapiro, M.: Putting consistency back into eventual consistency. In: 10th EuroSys. ACM (2015). http://dl.acm.org/citation.cfm?doid=2741948.2741972

  5. Beeri, C., Bernstein, P., Goodman, N.: A sophisticate’s introduction to database normalization theory. In: VLDB, pp. 113–124 (1978)

    Google Scholar 

  6. Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., O’Neil, P.: A critique of ansi sql isolation levels. SIGMoD Record 24(2), 1–10 (1995)

    Article  Google Scholar 

  7. Bermbach, D., Tai, S.: Eventual consistency: how soon is eventual? In: 6th MW4SOC. ACM (2011)

    Google Scholar 

  8. Bernabé-Gisbert, J., Muñoz-Escoí, F.: Supporting multiple isolation levels in replicated environments. Data & Knowledge Engineering 7980, 1–16 (2012)

    Article  Google Scholar 

  9. Bernstein, P., Das, S.. Rethinking eventual consistency. In: SIGMOD 2013, pp. 923–928. ACM (2013)

    Google Scholar 

  10. Bernstein, P., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in Database Systems. Addison-Wesley (1987)

    Google Scholar 

  11. Bertossi, L., Hunter, A., Schaub, T.: Inconsistency Tolerance. In: Bertossi, L., Hunter, A., Schaub, T. (eds.) Inconsistency Tolerance. LNCS, vol. 3300, pp. 1–14. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Bobenrieth, A.: Inconsistencias por qué no? Un estudio filosófico sobre la lógica paraconsistente. Premios Nacionales Colcultura. Tercer Mundo Editores. Magister Thesis, Universidad de los Andes, Santafé de Bogotá, Columbia (1995)

    Google Scholar 

  13. Bosneag, A.-M., Brockmeyer, M.: A formal model for eventual consistency semantics. In: PDCS 2002, pp. 204–209. IASTED (2001)

    Google Scholar 

  14. Browne, J.: Brewer’s cap theorem (2009). http://www.julianbrowne.com/article/viewer/brewers-cap-theorem

  15. Cong, G., Fan, W., Geerts, F., Jia, X., Ma, S.: Improving data quality: consistency and accuracy. In: Proc. 33rd VLDB, pp. 315–326. ACM (2007)

    Google Scholar 

  16. Dechter, R., van Beek, P.: Local and global relational consistency. Theor. Comput. Sci. 173(1), 283–308 (1997)

    Article  MATH  Google Scholar 

  17. Decker, H.: Translating advanced integrity checking technology to SQL. In: Doorn, J., Rivero, L. (eds.) Database integrity: challenges and solutions, pp. 203–249. Idea Group (2002)

    Google Scholar 

  18. Decker, H.: Historical and computational aspects of paraconsistency in view of the logic foundation of databases. In: Bertossi, L., Katona, G.O.H., Schewe, K.-D., Thalheim, B. (eds.) Semantics in Databases 2001. LNCS, vol. 2582, pp. 63–81. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Decker, H.: Answers that have integrity. In: Schewe, K.-D., Thalheim, B. (eds.) SDKB 2010. LNCS, vol. 6834, pp. 54–72. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  20. Decker, H.: New measures for maintaining the quality of databases. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part IV. LNCS, vol. 7336, pp. 170–185. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  21. Decker, H.: A pragmatic approach to model, measure and maintain the quality of information in databases (2012). www.iti.upv.es/~hendrik/papers/ahrc-workshop_quality-of-data.pdf, www.iti.upv.es/~hendrik/papers/ahrc-workshop_quality-of-data_comments.pdf. Slides and comments presented at the Workshop on Information Quality. Univ, Hertfordshire, UK

  22. Decker, H.: Answers that have quality. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part II. LNCS, vol. 7972, pp. 543–558. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  23. Decker, H.: Measure-based inconsistency-tolerant maintenance of database integrity. In: Schewe, K.-D., Thalheim, B. (eds.) SDKB 2013. LNCS, vol. 7693, pp. 149–173. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  24. Decker, H., Martinenghi, D.: Inconsistency-tolerant integrity checking. IEEE Transactions of Knowledge and Data Engineering 23(2), 218–234 (2011)

    Article  Google Scholar 

  25. Decker, H., Muñoz-Escoí, F.D.: Revisiting and improving a result on integrity preservation by concurrent transactions. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6428, pp. 297–306. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  26. Dong, X.L., Berti-Equille, L., Srivastava, D.: Data fusion: resolving conflicts from multiple sources (2015). http://arxiv.org/abs/1503.00310

  27. Eswaran, K., Gray, J., Lorie, R., Traiger, I.: The notions of consistency and predicate locks in a database system. CACM 19(11), 624–633 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  28. Muñoz-Escoí, F.D., Ruiz-Fuertes, M.I., Decker, H., Armendáriz-Íñigo, J.E., de Mendívil, J.R.G.: Extending middleware protocols for database replication with integrity support. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part I. LNCS, vol. 5331, pp. 607–624. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  29. Fekete, A.: Consistency models for replicated data. In: Encyclopedia of Database Systems, pp. 450–451. Springer (2009)

    Google Scholar 

  30. Fekete, A., Gupta, D., Lynch, V., Luchangco, N., Shvartsman, A.: Eventually-serializable data services. In: 15th PoDC, pp. 300–309. ACM (1996)

    Google Scholar 

  31. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services. SIGACT News 33(2), 51–59 (2002)

    Article  Google Scholar 

  32. Golab, W., Rahman, M., Auyoung, A., Keeton, K., Li, X.: Eventually consistent: Not what you were expecting? ACM Queue, 12(1) (2014)

    Google Scholar 

  33. Grant, J., Hunter, A.: Measuring inconsistency in knowledgebases. Journal of Intelligent Information Systems 27(2), 159–184 (2006)

    Article  Google Scholar 

  34. Gray, J., Lorie, R., Putzolu, G., Traiger, I.: Granularity of locks and degrees of consistency in a shared data base. In: Nijssen, G. (ed.) Modelling in Data Base Management Systems. North Holland (1976)

    Google Scholar 

  35. Haerder, T., Reuter, A.: Principles of transaction-oriented database recovery. Computing Surveys 15(4), 287–317 (1983)

    Article  MathSciNet  Google Scholar 

  36. Herlihy, M., Wing, J.: Linearizability: a correctness condition for concurrent objects. TOPLAS 12(3), 463–492 (1990)

    Article  Google Scholar 

  37. R. Ho. Design pattern for eventual consistency (2009). http://horicky.blogspot.com.es/2009/01/design-pattern-for-eventual-consistency.html

  38. Ikeda, R., Park, H., Widom, J.: Provenance for generalized map and reduce workflows. In: CIDR (2011)

    Google Scholar 

  39. Kempster, T., Stirling, C., Thanisch, P.: Diluting acid. SIGMoD Record 28(4), 17–23 (1999)

    Article  Google Scholar 

  40. Li, X., Dong, X.L., Meng, W., Srivastava, D.: Truth finding on the deep web: Is the problem solved? VLDB Endowment 6(2), 97–108 (2012)

    Article  Google Scholar 

  41. Lloyd, W., Freedman, M., Kaminsky, M., Andersen, D.: Don’t settle for eventual: scalable causal consistency for wide-area storage with cops. In: 23rd SOPS, pp. 401–416 (2011)

    Google Scholar 

  42. Lomet, D.: Transactions: from local atomicity to atomicity in the cloud. In: Jones, C.B., Lloyd, J.L. (eds.) Dependable and Historic Computing. LNCS, vol. 6875, pp. 38–52. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  43. Monge, P., Contractor, N.: Theory of Communication Networks. Oxford University Press (2003)

    Google Scholar 

  44. Nicolas, J.-M.: Logic for improving integrity checking in relational data bases. Acta Informatica 18, 227–253 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  45. Muñoz-Escoí, F.D., Irún, L., H. Decker: Database replication protocols. In: Encyclopedia of Database Technologies and Applications, pp. 153–157. IGI Global (2005)

    Google Scholar 

  46. Oracle: Constraints. http://docs.oracle.com/cd/B19306_01/server.102/b14223/constra.htm (May 1, 2015)

  47. Ouzzani, M., Medjahed, B., Elmagarmid, A.: Correctness criteria beyond serializability. In: Encyclopedia of Database Systems, pp. 501–506. Springer (2009)

    Google Scholar 

  48. Rosenkrantz, D., Stearns, R., Lewis, P.: Consistency and serializability in concurrent datanbase systems. SIAM J. Comput. 13(3), 508–530 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  49. Saito, Y., Shapiro, M.: Optimistic replication. JACM 37(1), 42–81 (2005)

    Google Scholar 

  50. Sandhu, R.: On five definitions of data integrity. In: Proc. IFIP WG11.3 Workshop on Database Security, pp. 257–267. North-Holland (1994)

    Google Scholar 

  51. Simmons, G.: Contemporary Cryptology: The Science of Information Integrity. IEEE Press (1992)

    Google Scholar 

  52. Sivathanu, G., Wright, C., Zadok, E.: Ensuring data integrity in storage: techniques and applications. In: Proc. 12th Conf. on Computer and Communications Security, p. 26. ACM (2005)

    Google Scholar 

  53. Svanks, M.: Integrity analysis: Methods for automating data quality assurance. Information and Software Technology 30(10), 595–605 (1988)

    Article  Google Scholar 

  54. Technet, M.: Data integrity. https://technet.microsoft.com/en-us/library/aa933058 (May 1, 2015)

  55. Terry, D.: Replicated data consistency explained through baseball. Technical report, Microsoft. MSR Technical Report (2011)

    Google Scholar 

  56. Traiger, I., Gray, J., Galtieri, C., Lindsay, B.: Transactions and consistency in distributed database systems. ACM Trans. Database Syst. 7(3), 323–342 (1982)

    Article  MATH  Google Scholar 

  57. Vidyasankar, K.: Serializability. In: Encyclopedia of Database Systems, pp. 2626–2632. Springer (2009)

    Google Scholar 

  58. Vogels, W.: Eventually consistent (2007). http://www.allthingsdistributed.com/2007/12/eventually_consistent.html. Other versions in ACM Queue 6(6), 14–19. http://queue.acm.org/detail.cfm?id=1466448 (2008) and CACM 52(1), 40–44 (2009)

  59. Wikipedia: Consistency model. http://en.wikipedia.org/wiki/Consistency_model (May 1, 2015)

  60. Wikipedia: Data integrity. http://en.wikipedia.org/wiki/Data_integrity (May 1, 2015)

  61. Wikipedia: Data quality. http://en.wikipedia.org/wiki/Data_quality (May 1, 2015)

  62. Yin, X., Han, J., Yu, P.: Truth discovery with multiple conflicting information providers on the web. IEEE Transactions of Knowledge and Data Engineering 20(6), 796–808 (2008)

    Article  Google Scholar 

  63. Young, G.: Quick thoughts on eventual consistency (2010). http://codebetter.com/gregyoung/2010/04/14/quick-thoughts-on-eventual-consistency/ (May 1, 2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Misra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Decker, H., Muñoz-Escoí, F.D., Misra, S. (2015). Data Consistency: Toward a Terminological Clarification. In: Gervasi, O., et al. Computational Science and Its Applications -- ICCSA 2015. ICCSA 2015. Lecture Notes in Computer Science(), vol 9159. Springer, Cham. https://doi.org/10.1007/978-3-319-21413-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21413-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21412-2

  • Online ISBN: 978-3-319-21413-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics