Abstract
The present study uses MATLAB as a tool to develop and to solve the dynamical equations of motion for an open kinematic chain. MATLAB is convenient for finding the equations of motion using Lagrange method and for solving numerically the nonlinear differential equations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Quinn, R.: Equations of motion for structures in terms of quasicoordinates. J. Appl. Mech. 57(3), 745–749 (1990)
Whittaker, E.: Analytical Dynamics of Particles and Rigid Bodies. Dover Publications, New York (1944)
Meirovitch, L.: Methods of Analytical Dynamics. McGraw Hill, New York (1970)
Baruh, H.: Analytical Dynamics. WCB/McGraw Hill, New York (1999)
Baruh, H.: Another look at the describing equations of dynamics. J. Chin. Soc. Mech. Eng. 1, 15–24 (2000)
Huston, R., Passerello, C.: On the dynamics of a human body model. J. Biomech. 4(5), 369–378 (1971)
Featherstone, R., Orin, D.: Robot dynamics: equations and algorithms. In: IEEE International Conference Robotics & Automation, San Francisco, CA, 826–834 (2000)
Kane, T., Levinson, D.: Kane’s dynamical equations in robotics. Int. J. Robot. Res. 2(3), 3–21 (1983)
Pan, D., Sharp, R.: Automatic formulation of dynamic equations of motion of robot manipulators. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 202(6), 397–404 (1988)
Tavakoli Nia, H., Pishkenari, H., Meghdari, A.: A recursive approach for the analysis of snake robots using kane’s equations. Robotica 24, 251–256 (2006)
Tur, J., Juan, S., Rovira, A.: Dynamic equations of motion for a 3-bar tensegrity based mobile robot. In: IEEE Conference on Emerging Technologies and Factory Automation, Patras, Greece, pp. 1334–1339 (2007)
Zhao, J., Liu, G., Yan, J., Zang, X.: Scout robot with wheeling-hopping combination locomotion. Ind. Robot: Int. J. 36(3), 244–248 (2009)
Khatib, O., Sentis, L., Park, J.: A unified framework for whole-body humanoid robot control with multiple constraints and contacts. In: European Robotics Symposium 2008, STAR 44, pp. 303–312. Springer, Berlin (2008)
Gomes, M., Ruina, A.: A five-link 2d brachiating ape model with life-like zero-energy-cost motions. J. Theor. Biol. 237(3), 265–278 (2005)
Mata, V., Provenzano, S., Cuadrado, P., Valero, F.: An o(n) algorithm for solving the inverse dynamic problem in robots by using the gibbs-appell formulation. In: Tenth World Congress IFToMM, Oulu 3, pp. 1208–1215 (1999)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Marghitu, D.B., Cojocaru, D. (2016). Gibbs-Appell Equations of Motion for a Three Link Robot with MATLAB. In: Borangiu, T. (eds) Advances in Robot Design and Intelligent Control. Advances in Intelligent Systems and Computing, vol 371. Springer, Cham. https://doi.org/10.1007/978-3-319-21290-6_32
Download citation
DOI: https://doi.org/10.1007/978-3-319-21290-6_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-21289-0
Online ISBN: 978-3-319-21290-6
eBook Packages: EngineeringEngineering (R0)