Abstract
The paper presents a hybrid genetic search model (HGSM) with novel neighbourhood based uniform local search to select the subset of salient features removing redundant information from the universe of discourse. The method uses least square regression error as the fitness function for selecting the most feasible set of features from a large number of feature set. Proposed work is validated using our simulated character dataset and some real world datasets available in UCI Machine learning repository and performance comparison of proposed method with some other state of art feature selection methods are provided.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Blum, A., Langley, P.: Selection of relevant features and examples in machine learning. Artif. Intell. 97(12), 245–271 (1997)
Kohavi, R., John, G.: Wrappers for feature subset selection. Artif. Intell. 97(12), 273–324 (1997)
Dy, J.G., Brodley, C.E., Kak, A.L., Broderick, S., Aisen, A.M.: Unsupervised feature selection applied to content-based retrieval of lung images. IEEE Trans. Pattern Anal. Mach. Intell. 25(3), 373–378 (2003)
Yu, L., Huan, L.: Efficient feature selection via analysis of relevance and redundancy. J. Mach. Learn. Res. 5, 1205–1224 (2004)
Onwubolu, G.C., Babu, B.V.: New Optimization Techniques in Engineering Goldberg. Studies in fuzziness and Soft Computing. Springer, New York (2004)
Dorigo, M., ed.: Ant colony optimization and swarm intelligence. In: 5th International Workshop, ANTS 2006, vol. 4150 (2006)
Glover, F.: Tabu search-part I. ORSA J. Comput. 1(3), 190–206 (1989)
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 661–680 (1983)
Lin, S.W., Ying, K.C., Chen, S.C., Lee, Z.J.: Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Syst. Appl. 35(4), 1817–1824 (2008)
Ramadan, R.M., Abdel-Kader, R.F.: Face recognition using particle swarm optimization-based selected features. Int. J. Signal Process. Image Process. Pattern Recogn. 2(2), 51–65 (2009)
Wang, X., Yang, J., Teng, X., Xia, W., Jensen, R.: Feature selection based on rough sets and particle swarm optimization. Pattern Recogn. Lett. 28(4), 459–471 (2007)
Agrafiotis, D.K., Cedeno, W.: Feature selection for structure-activity correlation using binary particle swarms. J. Med. Chem. 45(5), 1098–1107 (2002)
Chuang, L.Y., Chang, H.W., Tu, C.J., Yang, C.H.: Improved binary PSO for feature selection using gene expression data. Comput. Biol. Chem. 32(1), 29–38 (2008)
Huang, C.L., Dun, J.F.: A distributed PSO–SVM hybrid system with feature selection and parameter optimization. Appl. Soft Comput. 8(4), 1381–1391 (2008)
Xiao, X., Dow, E.R., Eberhart, R., Miled, Z.B., Oppelt, R.J.: Gene clustering using self-organizing maps and particle swarm optimization. In: Parallel and Distributed Processing Symposium, vol. 10. IEEE (2003)
Pedrycz, W., Park, B.-J., Pizzi, N.J.: Identifying core sets of discriminatory features using particle swarm optimization. Expert Syst. Appl. 36(3), 4610–4616 (2009)
Knowles, J.D., Corne, D.W.: M-PAES: A memetic algorithm for multiobjective optimization. Evolutionary Computation. In: Proceedings of the 2000 Congress, vol. 1. IEEE (2000)
Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Mach. Learn. 3(2), 95–99 (1988)
Deb, K., et al.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Coello, C.A.C., Lamont, G.B., van Veldhuisen, D.A.: Evolutionary Algorithms for Solving Multi-objective Problems. Springer, Berlin (2007)
Aarts, E.H.L., Lenstra, J.K. (eds.): Local Search in Combinatorial Optimization. Princeton University Press, Princeton (2003)
Kim, K.W., Yun, Y.S., Yoon, J.M., Gen, M., Yamazaki, G.: Hybrid genetic algorithm with adaptive abilities for resource constrained multiple project scheduling. Comput. Ind. 56(2), 143–160 (2005)
Diaz, C.A.D., Muro, A.G., Pérez, R.B., Morales, E.V.: A hybrid model of genetic algorithm with local search to discover linguistic data summaries from creep data. Expert Syst. Appl. 41, 2035–2042 (2014)
Ishibuchi, H., Murata, T.: A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans. Syst. Man Cybern. 28(3), 392–403 (1998)
Sharma, S., Mathew, T.V.: Multiobjective network design for emission and travel-time trade-off for a sustainable large urban transportation network. Environ. Plann. B Plann. Des. 38(3), 520–538 (2011)
Ramsey, J.B.: Tests for specification errors in classical linear least square regression analysis. J. Royal Stat. Soc. Ser. B (Methodol.) 31, 350–371 (1969)
Pati, S.K., Das, A.K., Ghosh, A.: Gene selection using multi-objective genetic algorithm integrating cellular automata and rough set theory. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Dash, S.S. (eds.) SEMCCO 2013, Part II. LNCS, vol. 8298, pp. 144–155. Springer, Heidelberg (2013)
Norton, G.H., Salagean, A.: On the hamming distance of linear codes over a finite chain ring. IEEE Trans. Inf. Theory 46(3), 1060–1067 (2000)
Dash, M., Liu, H.: Consistency-based search in feature selection. Artif. Intell. 151(1), 155–176 (2003)
Hall, M.A.: Correlation-based feature selection for machine learning. Diss. The University of Waikato (1999)
Kennedy, J.: Particle swarm optimization. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 760–766. Springer, US, London (2010)
Hall, M., et al.: The WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009)
Albukhanajer, W.A., Jin, Y., Briffa, J.A.: Neural network ensembles for image identification using pareto-optimal features. In: IEEE Congress on Evolutionary Computation CEC (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Das, S., Ghosh, A., Das, A.K. (2015). A Neighbourhood Based Hybrid Genetic Search Model for Feature Selection. In: Panigrahi, B., Suganthan, P., Das, S. (eds) Swarm, Evolutionary, and Memetic Computing. SEMCCO 2014. Lecture Notes in Computer Science(), vol 8947. Springer, Cham. https://doi.org/10.1007/978-3-319-20294-5_37
Download citation
DOI: https://doi.org/10.1007/978-3-319-20294-5_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-20293-8
Online ISBN: 978-3-319-20294-5
eBook Packages: Computer ScienceComputer Science (R0)