The Complex Event Processing Paradigm | SpringerLink
Skip to main content

The Complex Event Processing Paradigm

  • Chapter
Data Management in Pervasive Systems

Part of the book series: Data-Centric Systems and Applications ((DCSA))

Abstract

Complex event processing (CEP) systems represent a mainstream approach for processing streams of data. Specifically, they target the definition and detection of high-level situations of interest, or composite events, starting from streams of primitive events collected from the external environment. In CEP, composite events are specified through user-defined rules, which express how to select, manipulate, and combine primitive events. Thanks to the capability of handling large volumes of information to isolate situations of interest, CEP represents a perfect solution for the management and online analysis of data in pervasive systems. Researchers and practitioners working on CEP focused on the creation of simple, yet expressive languages for the definition of CEP rules. At the same time, they also put significant effort on performance and scalability, defining efficient algorithms and rule evaluation mechanisms that enable high-throughput and low processing delay. This chapter focuses on both aspects. On the one hand, it presents the processing abstractions offered by existing CEP systems in details, focusing on the applicability to pervasive systems. On the other hand, it presents some of the processing algorithms and techniques that contribute to the performance of state-of-the-art CEP systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 7149
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adi, A., Etzion, O.: Amit - the situation manager. VLDB J. 13(2), 177–203 (2004)

    Article  Google Scholar 

  2. Agrawal, J., Diao, Y., Gyllstrom, D., Immerman, N.: Efficient pattern matching over event streams. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD ‘08, pp. 147–160. ACM, New York (2008)

    Google Scholar 

  3. Ali, M.: An introduction to microsoft sql server streaminsight. In: Proceedings of the 1st International Conference and Exhibition on Computing for Geospatial Research and Application, COM.Geo ‘10, pp. 66:1–66:1. ACM, New York (2010)

    Google Scholar 

  4. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)

    Article  MATH  Google Scholar 

  5. Brenna, L., Demers, A., Gehrke, J., Hong, M., Ossher, J., Panda, B., Riedewald, M., Thatte, M., White, W.: Cayuga: a high-performance event processing engine. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, SIGMOD ‘07, pp. 1100–1102. ACM, New York (2007)

    Google Scholar 

  6. Cugola, G., Margara, A.: Raced: an adaptive middleware for complex event detection. In: Proceedings of the 8th International Workshop on Adaptive and Reflective MIddleware, ARM ‘09, pp. 5:1–5:6. ACM, New York (2009)

    Google Scholar 

  7. Cugola, G., Margara, A.: Tesla: a formally defined event specification language. In: Proceedings of the Fourth ACM International Conference on Distributed Event-Based Systems, DEBS ‘10, pp. 50–61. ACM, New York (2010)

    Google Scholar 

  8. Cugola, G., Margara, A.: Complex event processing with t-rex. J. Syst. Softw. 85(8), 1709–1728 (2012)

    Article  Google Scholar 

  9. Cugola, G., Margara, A.: Low latency complex event processing on parallel hardware. J. Parallel Distrib. Comput. 72(2), 205–218 (2012)

    Article  Google Scholar 

  10. Cugola, G., Margara, A.: Processing flows of information: from data stream to complex event processing. ACM Comput. Surv. 44(3), 15:1–15:62 (2012)

    Google Scholar 

  11. Cugola, G., Margara, A.: Deployment strategies for distributed complex event processing. Computing 95(2), 129–156 (2013)

    Article  MATH  Google Scholar 

  12. Cugola, G., Margara, A., Matteucci, M., Tamburrelli, G.: Introducing uncertainty in complex event processing: model, implementation, and validation. Computing 97(2), 103–144 (2015)

    Article  MATH  Google Scholar 

  13. Etzion, O., Niblett, P.: Event Processing in Action, 1st edn. Manning Publications Co., Greenwich (2010)

    Google Scholar 

  14. Eugster, P., Jayaram, K.: Eventjava: an extension of java for event correlation. In: Drossopoulou, S. (ed.) ECOOP 2009 – Object-Oriented Programming. Lecture Notes in Computer Science, vol. 5653, pp. 570–594. Springer, Berlin/Heidelberg (2009)

    Chapter  Google Scholar 

  15. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of publish/subscribe. ACM Comput. Surv. 35, 114–131 (2003)

    Article  Google Scholar 

  16. Gasiunas, V., Satabin, L., Mezini, M., Núñez, A., Noyé, J.: Escala: modular event-driven object interactions in scala. In: Proceedings of the Tenth International Conference on Aspect-Oriented Software Development, AOSD ‘11, pp. 227–240. ACM, New York (2011)

    Google Scholar 

  17. Khandekar, R., Hildrum, K., Parekh, S., Rajan, D., Wolf, J., Wu, K.L., Andrade, H., Gedik, B.: Cola: optimizing stream processing applications via graph partitioning. In: Middleware ‘09, pp. 1–20. Springer, New York (2009)

    Google Scholar 

  18. Kuka, C., Nicklas, D.: Quality matters: supporting quality-aware pervasive applications by probabilistic data stream management. In: Proceedings of the 8th ACM International Conference on Distributed Event-Based Systems, DEBS ‘14, pp. 1–12. ACM, New York (2014)

    Google Scholar 

  19. Lakshmanan, G.T., Li, Y., Strom, R.: Placement strategies for internet-scale data stream systems. IEEE Internet Comput. 12(6), 50–60 (2008)

    Article  Google Scholar 

  20. Luckham, D.: The power of events: an introduction to complex event processing in distributed enterprise systems. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) Rule Representation, Interchange and Reasoning on the Web. Lecture Notes in Computer Science, vol. 5321, pp. 3–3. Springer, Berlin/Heidelberg (2008)

    Chapter  Google Scholar 

  21. Margara, A.: Combining expressiveness and efficiency in a complex event processing middleware. Ph.D. thesis, Politecnico di Milano (2012)

    Google Scholar 

  22. Margara, A., Salvaneschi, G.: We have a dream: distributed reactive programming with consistency guarantees. In: Proceedings of the 8th ACM International Conference on Distributed Event-Based Systems, DEBS ‘14, pp. 142–153. ACM, New York (2014)

    Google Scholar 

  23. Margara, A., Cugola, G., Tamburrelli, G.: Learning from the past: automated rule generation for complex event processing. In: Proceedings of the 8th ACM International Conference on Distributed Event-Based Systems, DEBS ‘14, pp. 47–58. ACM, New York (2014)

    Google Scholar 

  24. Meyerovich, L.A., Guha, A., Baskin, J., Cooper, G.H., Greenberg, M., Bromfield, A., Krishnamurthi, S.: Flapjax: a programming language for ajax applications. In: Proceedings of the 24th ACM SIGPLAN Conference on Object Oriented Programming Systems Languages and Applications, OOPSLA ‘09, pp. 1–20. ACM, New York (2009)

    Google Scholar 

  25. Pietzuch, P., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh, M., Seltzer, M.: Network-aware operator placement for stream-processing systems. In: Proceedings of the 22nd International Conference on Data Engineering, ICDE ‘06, p. 49. IEEE Computer Society, Washington (2006)

    Google Scholar 

  26. Rajan, H., Leavens, G.: Ptolemy: a language with quantified, typed events. In: Vitek, J. (ed.) ECOOP 2008 – Object-Oriented Programming. Lecture Notes in Computer Science, vol. 5142, pp. 155–179. Springer, Berlin/Heidelberg (2008)

    Chapter  Google Scholar 

  27. Ré, C., Letchner, J., Balazinksa, M., Suciu, D.: Event queries on correlated probabilistic streams. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD ‘08, pp. 715–728. ACM, New York (2008)

    Google Scholar 

  28. Salvaneschi, G., Hintz, G., Mezini, M.: Rescala: bridging between object-oriented and functional style in reactive applications. In: Proceedings of the 13th International Conference on Aspect-Oriented Software Development, AOSD, vol. 14 (2014)

    Google Scholar 

  29. Schultz-Møller, N.P., Migliavacca, M., Pietzuch, P.: Distributed complex event processing with query rewriting. In: Proceedings of the Third ACM International Conference on Distributed Event-Based Systems, DEBS ‘09, pp. 4:1–4:12. ACM, New York (2009)

    Google Scholar 

  30. Srivastava, U., Widom, J.: Flexible time management in data stream systems. In: Proceedings of the 23rd ACM Symposium on Principles of Database Systems, pp. 263–274. ACM, New York (2004)

    Google Scholar 

  31. Wasserkrug, S., Gal, A., Etzion, O., Turchin, Y.: Complex event processing over uncertain data. In: Proceedings of the Second International Conference on Distributed Event-Based Systems, DEBS ‘08, pp. 253–264. ACM, New York (2008)

    Google Scholar 

  32. Wasserkrug, S., Gal, A., Etzion, O., Turchin, Y.: Efficient processing of uncertain events in rule-based systems. IEEE Trans. Knowl. Data Eng. 24(1), 45–58 (2012)

    Article  Google Scholar 

  33. White, W., Riedewald, M., Gehrke, J., Demers, A.: What is “next” in event processing? In: PODS, pp. 263–272. ACM, New York (2007)

    Google Scholar 

  34. Wolf, J., Bansal, N., Hildrum, K., Parekh, S., Rajan, D., Wagle, R., Wu, K.L., Fleischer, L.: Soda: an optimizing scheduler for large-scale stream-based distributed computer systems. In: Middleware ‘08, pp. 306–325. Springer, New York (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianpaolo Cugola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cugola, G., Margara, A. (2015). The Complex Event Processing Paradigm. In: Colace, F., De Santo, M., Moscato, V., Picariello, A., Schreiber, F., Tanca, L. (eds) Data Management in Pervasive Systems. Data-Centric Systems and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-20062-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20062-0_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20061-3

  • Online ISBN: 978-3-319-20062-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics