Abstract
In this paper we propose application of extended AMUSE blind signal separation method to improve a model prediction. In our approach we assume, that results generated by any regression model usually include both constructive and destructive components. In case of a few models, some of the components can be common to all of them. Our aim is to find the basis elements via AMUSE algorithm and distinguish the components with the constructive influence on the modelling quality from the destructive ones. We extend the standard AMUSE algorithm for cases with strong noises. The crucial question is to determine number of delays used in separation process and define criterion for destructive components identification. We propose novel method of randomness analysis to solve above problems. Due to complexity of the whole BSS aggregation method we include some methodological remarks as the framework for proposed approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Benoit, Seffens, W.: Science 285(5431), 1228 (1999), http://www.trusoft.netmegs.com
Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)
Choi, S., Cichocki, A., Belouchrani, A.: Second order nonstationary source separation. Journal of VLSI Signal Processing 32(1-2), 93–104 (2002)
Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing. John Wiley, Chichester (2002)
Clements, R.T.: Combining forecasts: A review and annotated bibliography. International Journal of Forecasting 5, 559–581 (1989)
Feder, J.: Fractals. Plenum Press, New York (1988)
Friedman, J.H.: Multivariate Adaptive Regression Splines. Annuals of Statistics 19, 1–141 (1991)
Haykin, S.: Neural networks: a comprehensive foundation. Macmillan, New York (1994)
Hurst, H.E.: Long term storage capacity of reservoirs. Trans. Am. Soc. Civil Engineers 116 (1951)
Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley (2001)
Mandelnbrot, B.: Multifractals and 1/f noise. Springer, Heidelberg (1997)
Molgedey, L., Schuster, H.: Separation of a mixture of independent signals using time delayed correlations. Phisical Review Letters 72(23), 3634–3637 (1994)
Peters, E.: Fractal market analysis. John Wiley and Son, Chichester (1996)
Samorodnitskij, G., Taqqu, M.: Stable non-Gaussian random processes: stochastic models with infinitive variance. Chapman and Hall, New York (1994)
Szupiluk, R., Wojewnik, P., Zabkowski, T.: Model improvement by the statistical decomposition. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 1199–1204. Springer, Heidelberg (2004)
Szupiluk, R., Cichocki, A.: Blind signal separation using second order statistics. In: Proc. of SPETO 2001, pp. 485–488 (2001)
Szupiluk, R., Wojewnik, P., Zabkowski, T.: The Noise Identification Method Based on Divergence Analysis in Ensemble Methods Context. In: Dobnikar, A., Lotrič, U., Šter, B. (eds.) ICANNGA 2011, Part II. LNCS, vol. 6594, pp. 206–214. Springer, Heidelberg (2011)
Tong, L., Liu, R., Huang, Y.-F.: Indeteminacy and Identifiability of Blind Identification. IEEE Trans. on Circuits and Systems 38(5), 499–509 (1991)
Vialatte, F.B., Cichocki, A., Dreyfus, G., Musha, T., Shishkin, S.L., Gervais, R.: Early Detection of Alzheimer’s Disease by Blind Source Separation, Time Frequency Representation, and Bump Modeling of EEG Signals. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 683–692. Springer, Heidelberg (2005)
Yang, Y.: Adaptive regression by mixing. Journal of American Statistical Association 96 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Szupiluk, R., Ząbkowski, T., Gajowniczek, K. (2015). Extended AMUSE Algorithm and Novel Randomness Approach for BSS Model Aggregation with Methodology Remarks. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2015. Lecture Notes in Computer Science(), vol 9120. Springer, Cham. https://doi.org/10.1007/978-3-319-19369-4_47
Download citation
DOI: https://doi.org/10.1007/978-3-319-19369-4_47
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-19368-7
Online ISBN: 978-3-319-19369-4
eBook Packages: Computer ScienceComputer Science (R0)