Extended AMUSE Algorithm and Novel Randomness Approach for BSS Model Aggregation with Methodology Remarks | SpringerLink
Skip to main content

Extended AMUSE Algorithm and Novel Randomness Approach for BSS Model Aggregation with Methodology Remarks

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9120))

Included in the following conference series:

  • 1961 Accesses

Abstract

In this paper we propose application of extended AMUSE blind signal separation method to improve a model prediction. In our approach we assume, that results generated by any regression model usually include both constructive and destructive components. In case of a few models, some of the components can be common to all of them. Our aim is to find the basis elements via AMUSE algorithm and distinguish the components with the constructive influence on the modelling quality from the destructive ones. We extend the standard AMUSE algorithm for cases with strong noises. The crucial question is to determine number of delays used in separation process and define criterion for destructive components identification. We propose novel method of randomness analysis to solve above problems. Due to complexity of the whole BSS aggregation method we include some methodological remarks as the framework for proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Benoit, Seffens, W.: Science 285(5431), 1228 (1999), http://www.trusoft.netmegs.com

  2. Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)

    MathSciNet  Google Scholar 

  3. Choi, S., Cichocki, A., Belouchrani, A.: Second order nonstationary source separation. Journal of VLSI Signal Processing 32(1-2), 93–104 (2002)

    Article  Google Scholar 

  4. Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing. John Wiley, Chichester (2002)

    Book  Google Scholar 

  5. Clements, R.T.: Combining forecasts: A review and annotated bibliography. International Journal of Forecasting 5, 559–581 (1989)

    Article  Google Scholar 

  6. Feder, J.: Fractals. Plenum Press, New York (1988)

    Book  Google Scholar 

  7. Friedman, J.H.: Multivariate Adaptive Regression Splines. Annuals of Statistics 19, 1–141 (1991)

    Article  Google Scholar 

  8. Haykin, S.: Neural networks: a comprehensive foundation. Macmillan, New York (1994)

    Google Scholar 

  9. Hurst, H.E.: Long term storage capacity of reservoirs. Trans. Am. Soc. Civil Engineers 116 (1951)

    Google Scholar 

  10. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley (2001)

    Google Scholar 

  11. Mandelnbrot, B.: Multifractals and 1/f noise. Springer, Heidelberg (1997)

    Google Scholar 

  12. Molgedey, L., Schuster, H.: Separation of a mixture of independent signals using time delayed correlations. Phisical Review Letters 72(23), 3634–3637 (1994)

    Article  Google Scholar 

  13. Peters, E.: Fractal market analysis. John Wiley and Son, Chichester (1996)

    Google Scholar 

  14. Samorodnitskij, G., Taqqu, M.: Stable non-Gaussian random processes: stochastic models with infinitive variance. Chapman and Hall, New York (1994)

    Google Scholar 

  15. Szupiluk, R., Wojewnik, P., Zabkowski, T.: Model improvement by the statistical decomposition. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 1199–1204. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Szupiluk, R., Cichocki, A.: Blind signal separation using second order statistics. In: Proc. of SPETO 2001, pp. 485–488 (2001)

    Google Scholar 

  17. Szupiluk, R., Wojewnik, P., Zabkowski, T.: The Noise Identification Method Based on Divergence Analysis in Ensemble Methods Context. In: Dobnikar, A., Lotrič, U., Šter, B. (eds.) ICANNGA 2011, Part II. LNCS, vol. 6594, pp. 206–214. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Tong, L., Liu, R., Huang, Y.-F.: Indeteminacy and Identifiability of Blind Identification. IEEE Trans. on Circuits and Systems 38(5), 499–509 (1991)

    Article  Google Scholar 

  19. Vialatte, F.B., Cichocki, A., Dreyfus, G., Musha, T., Shishkin, S.L., Gervais, R.: Early Detection of Alzheimer’s Disease by Blind Source Separation, Time Frequency Representation, and Bump Modeling of EEG Signals. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 683–692. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  20. Yang, Y.: Adaptive regression by mixing. Journal of American Statistical Association 96 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Szupiluk, R., Ząbkowski, T., Gajowniczek, K. (2015). Extended AMUSE Algorithm and Novel Randomness Approach for BSS Model Aggregation with Methodology Remarks. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2015. Lecture Notes in Computer Science(), vol 9120. Springer, Cham. https://doi.org/10.1007/978-3-319-19369-4_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19369-4_47

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19368-7

  • Online ISBN: 978-3-319-19369-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics