On the Complexity of Wafer-to-Wafer Integration | SpringerLink
Skip to main content

On the Complexity of Wafer-to-Wafer Integration

  • Conference paper
  • First Online:
Algorithms and Complexity (CIAC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9079))

Included in the following conference series:

  • 852 Accesses

Abstract

In this paper we consider the Wafer-to-Wafer Integration problem. A wafer is a \(p\)-dimensional binary vector. The input of this problem is described by \(m\) disjoints sets (called “lots”), where each set contains \(n\) wafers. The output of the problem is a set of \(n\) disjoint stacks, where a stack is a set of \(m\) wafers (one wafer from each lot). To each stack we associate a \(p\)-dimensional binary vector corresponding to the bit-wise AND operation of the wafers of the stack. The objective is to maximize the total number of “1” in the \(n\) stacks. We provide \(O(m^{1-\epsilon })\) and \(O(p^{1-\epsilon })\) non-approximability results even for \(n= 2\), as well as a \(\frac{p}{r}\)-approximation algorithm for any constant \(r\). Finally, we show that the problem is FPT when parameterized by \(p\), and we use this FPT algorithm to improve the running time of the \(\frac{p}{r}\)-approximation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Crescenzi, P., Kann, V., Silvestri, R., Trevisan, L.: Structure in approximation classes. SIAM Journal on Computing 28(5), 1759–1782 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cygan, M.: Improved approximation for 3-dimensional matching via bounded pathwidth local search. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS), pp. 509–518. IEEE (2013)

    Google Scholar 

  3. Dokka, T., Bougeret, M., Boudet, V., Giroudeau, R., Spieksma, F.C.R.: Approximation algorithms for the wafer to wafer integration problem. In: Erlebach, T., Persiano, G. (eds.) WAOA 2012. LNCS, vol. 7846, pp. 286–297. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Dokka, T., Crama, Y., Spieksma, F.C.R.: Multi-dimensional vector assignment problems. Discrete Optimization 14, 111–125 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  5. Duvillié, G., Bougeret, M., Boudet, V., Dokka, T., Giroudeau, R.: On the complexity of Wafer-to-Wafer Integration. Research report, Lirmm; UM II montpellier, Faculté des Sciences et Techniques du Languedoc, January 2015. HAL id:lirmm-01110027

    Google Scholar 

  6. Hazan, E., Safra, S., Schwartz, O.: On the complexity of approximating k-dimensional matching. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 83–97. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Kratsch, S.: On polynomial kernels for integer linear programs: covering, packing and feasibility. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 647–658. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Mathematics of Operations Research 8(4), 538–548 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  9. Niedermeier, R.: Invitation to fixed-parameter algorithms (2006)

    Google Scholar 

  10. Reda, S., Smith, G., Smith, L.: Maximizing the functional yield of wafer-to-wafer 3-d integration. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 17(9), 1357–1362 (2009)

    Article  Google Scholar 

  11. Williamson, D.P., Shmoys, D.B.: The design of approximation algorithms. Cambridge University Press (2011)

    Google Scholar 

  12. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. In: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing, pp. 681–690. ACM (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillerme Duvillié .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Duvillié, G., Bougeret, M., Boudet, V., Dokka, T., Giroudeau, R. (2015). On the Complexity of Wafer-to-Wafer Integration. In: Paschos, V., Widmayer, P. (eds) Algorithms and Complexity. CIAC 2015. Lecture Notes in Computer Science(), vol 9079. Springer, Cham. https://doi.org/10.1007/978-3-319-18173-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18173-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18172-1

  • Online ISBN: 978-3-319-18173-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics