Modeling 1D Distributed-Memory Dense Kernels for an Asynchronous Multifrontal Sparse Solver | SpringerLink
Skip to main content

Modeling 1D Distributed-Memory Dense Kernels for an Asynchronous Multifrontal Sparse Solver

  • Conference paper
  • First Online:
High Performance Computing for Computational Science -- VECPAR 2014 (VECPAR 2014)

Abstract

To solve sparse systems of linear equations, multifrontal methods rely on dense partial \(LU\) decompositions of so-called frontal matrices; we consider a parallel asynchronous setting in which several frontal matrices can be factored simultaneously. In this context, to address performance and scalability issues of acyclic pipelined asynchronous factorization kernels, we study models to revisit properties of left and right-looking variants of partial \(LU\) decompositions, study the use of several levels of blocking, before focusing on communication issues. The general purpose sparse solver MUMPS has been modified to implement the proposed algorithms and confirm the properties demonstrated by the models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.netlib.org/hpl/.

References

  1. Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Ltaief, H., Luszczek, P., Tomov, S.: Numerical linear algebra on emerging architectures: the PLASMA and MAGMA projects. J. Phys. Conf. Ser. 180(1), 012037 (2009)

    Article  Google Scholar 

  2. Amestoy, P.R., Buttari, A., Duff, I.S., Guermouche, A., L’Excellent, J.-Y., Uçar, B.: The multifrontal method. In: Padua, D. (ed.) Encyclopedia of Parallel Computing, pp. 1209–1216. Springer, Heidelberg (2011)

    Google Scholar 

  3. Amestoy, P.R., Duff, I.S., Koster, J., L’Excellent, J.-Y.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: StarPU: a unified platform for task scheduling on heterogeneous multicore architectures. Concurrency Comput.: Pract. Experience 23(2), 187–198 (2011). Special Issue: Euro-Par 2009

    Article  Google Scholar 

  5. Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Haidar, A., Herault, T., Kurzak, J., Langou, J., Lemarinier, P., Ltaief, H., Luszczek, P., Yarkhan, A., Dongarra, J.J.: distibuted dense numerical linear algebra algorithms on massively parallel architectures: DPLASMA. In: Proceedings of the 25th IEEE International Symposium on Parallel & Distributed Processing Workshops and Ph.D. Forum (IPDPSW’11). PDSEC 2011, pp. 1432–1441. Anchorage, USA (2011)

    Google Scholar 

  6. Bosilca,G., Bouteiller, A., Danalis, A., Herault, T., Lemarinier, P., Dongarra, J.: DAGuE: A generic distributed DAG engine for high performance computing. In: 16th International Workshop on High-Level Parallel Programming Models and Supportive Environments (HIPS’11) (2011)

    Google Scholar 

  7. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A class of parallel tiled linear algebra algorithms for multicore architectures. Parallel Comput. 35(1), 38–53 (2009)

    Article  MathSciNet  Google Scholar 

  8. Choi, J., Dongarra, J.J., Ostrouchov, L.S., Petitet, A.P., Walker, D.W., Whaley, R.C.: Design and implementation of the ScaLAPACK LU, QR, and Cholesky factorization routines. Sci. Program. 5(3), 173–184 (1996)

    Google Scholar 

  9. Desprez, F., Dongarra, J.J., Tourancheau, B.: Performance complexity of LU factorization with efficient pipelining and overlap on a multiprocessor. LAPACK working note 67, Computer Science Department, University of Tennessee, Knoxville, Tennessee (1994)

    Google Scholar 

  10. Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Oxford University Press, London (1986)

    MATH  Google Scholar 

  11. Duff, I.S., Reid, J.K.: The multifrontal solution of unsymmetric sets of linear systems. SIAM J. Sci. Stat. Comput. 5, 633–641 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  12. Golub, G.H., Van Loan, C.F.: Matrix Computations, 2nd edn. Johns Hopkins Press, Baltimore (1989)

    MATH  Google Scholar 

  13. Grigori, L., Demmel, J., Xiang, H.: CALU: a communication optimal LU factorization algorithm. SIAM J. Matrix Anal. Appl. 32(4), 1317–1350 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hoefler, T., Lumsdaine, A.: Message progression in parallel computing - to thread or not to thread? In: IEEE International Conference on Cluster Computing, pp. 213–222 (2008)

    Google Scholar 

  15. Liu, J.W.H.: The multifrontal method for sparse matrix solution: theory and practice. SIAM Rev. 34, 82–109 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. Rouet, F.-H.: Memory and performance issues in parallel multifrontal factorizations and triangular solutions with sparse right-hand sides. Ph.D. thesis, Institut National Polytechnique de Toulouse, October 2012

    Google Scholar 

  17. Sid-Lakhdar, W.M.: Scaling multifrontal methods for the solution of large sparse linear systems on hybrid shared-distributed memory architectures. Ph.D. dissertation, ENS Lyon (2014, In preparation)

    Google Scholar 

  18. Solomonik, E., Bhatele, A., Demmel, J.: Improving communication performance in dense linear algebra via topology aware collectives. In: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2011, pp. 77:1–77:11. ACM, New York (2011)

    Google Scholar 

  19. Solomonik, E., Demmel, J.: Communication-optimal parallel 2.5D matrix multiplication and LU factorization algorithms. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par 2011, Part II. LNCS, vol. 6853, pp. 90–109. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  20. Toledo, S.: Locality of reference in lu decomposition with partial pivoting. SIAM J. Matrix Anal. Appl. 18(4), 1065–1081 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wadsworht, D.M., Chen, Z.: Performance of MPI broadcast algorithms. In: Proceedings of the 22nd International Parallel and Distributed Processing Symposium (IPDPS 2008), pp. 1–7 (2008)

    Google Scholar 

Download references

Acknowledgement

This work was granted access to the HPC resources of CALMIP under the allocation 2013-0989 and GENCI/IDRIS resources under allocation x2013065063.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wissam M. Sid-Lakhdar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Amestoy, P.R., L’Excellent, JY., Rouet, FH., Sid-Lakhdar, W.M. (2015). Modeling 1D Distributed-Memory Dense Kernels for an Asynchronous Multifrontal Sparse Solver. In: Daydé, M., Marques, O., Nakajima, K. (eds) High Performance Computing for Computational Science -- VECPAR 2014. VECPAR 2014. Lecture Notes in Computer Science(), vol 8969. Springer, Cham. https://doi.org/10.1007/978-3-319-17353-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17353-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17352-8

  • Online ISBN: 978-3-319-17353-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics