On the Choice of Tensor Estimation for Corner Detection, Optical Flow and Denoising | SpringerLink
Skip to main content

On the Choice of Tensor Estimation for Corner Detection, Optical Flow and Denoising

  • Conference paper
  • First Online:
Computer Vision - ACCV 2014 Workshops (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9009))

Included in the following conference series:

Abstract

Many image processing methods such as corner detection, optical flow and iterative enhancement make use of image tensors. Generally, these tensors are estimated using the structure tensor. In this work we show that the gradient energy tensor can be used as an alternative to the structure tensor in several cases. We apply the gradient energy tensor to common image problem applications such as corner detection, optical flow and image enhancement. Our experimental results suggest that the gradient energy tensor enables real-time tensor-based image enhancement using the graphical processing unit (GPU) and we obtain 40 % increase of frame rate without loss of image quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Förstner, W., Gülch, E.: A fast operator for detection and precise location of distinct points, corners and centres of circular features. In: ISPRS Intercommission, Workshop, Interlaken, pp. 149–155 (1987)

    Google Scholar 

  2. Bigun, J., Granlund, G.H.: Optimal orientation detection of linear symmetry. In: Proceedings of the IEEE First ICCV, pp. 433–438 (1987)

    Google Scholar 

  3. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of Fourth Alvey Vision Conference, pp. 147–151 (1988)

    Google Scholar 

  4. Shi, J., Tomasi, C.: Good features to track. In: CVPR 1994, pp. 593–600 (1994)

    Google Scholar 

  5. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence - Volume 2. IJCAI 1981, pp. 674–679. Morgan Kaufmann Publishers Inc., San Francisco (1981)

    Google Scholar 

  6. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner-Verlag, Stuttgart (1998)

    MATH  Google Scholar 

  7. Felsberg, M., Köthe, U.: GET: the connection between monogenic scale-space and gaussian derivatives. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 192–203. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer international series in engineering and computer science: Robotics: Vision, manipulation and sensors. Springer, New York (1993)

    MATH  Google Scholar 

  9. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A Database and Evaluation Methodology for Optical Flow. Int. J. Comput. Vis. 92, 1–31 (2011)

    Article  Google Scholar 

  10. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

    Article  Google Scholar 

  11. Bovik, A.C., Maragos, P.: Conditions for positivity of an energy operator. IEEE Trans. Signal Process. 42, 469–471 (1994)

    Article  Google Scholar 

  12. Granlund, G.H., Knutsson, H.: Signal processing for computer vision. Kluwer, New York (1995)

    Book  Google Scholar 

  13. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans.Pattern Anal. Mach. Intell. 27, 1615–1630 (2005)

    Article  Google Scholar 

  14. Mikolajczyk, K.: Implementation (2014). http://www.robots.ox.ac.uk/~vgg/research/affine

  15. Tomasi, C., Kanade., T.: Detection and Tracking of Point Features. Technical report, Carnegie Mellon University Technical Report CMU-CS-91-132 (1991)

    Google Scholar 

  16. Sun, D., Roth, S., Black, M.J.: Secrets of optical flow estimation and their principles. In: CVPR2010, pp. 2432–2439 (2010)

    Google Scholar 

  17. Scherzer, O., Weickert, J.: Relations Between Regularization and Diffusion Filtering. J. Math. Imag. Vis. 12, 43–63 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Podlozhnyuk, V.: Image convolution with CUDA, NVIDIA Corporation white paper, v1.0 (2007)

    Google Scholar 

  19. Olmos, A., Kingdom, F.A.A.: A biologically inspired algorithm for the recovery of shading and reflectance images. Percept. 33, 1463–1473 (2004)

    Article  Google Scholar 

  20. Felsberg, M.: Autocorrelation-Driven Diffusion Filtering. IEEE Trans. Image Process. 20, 1797–1806 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This research has received funding from the Swedish Research Council through grants for the projects Visualization-adaptive Iterative Denoising of Images (VIDI) and Extended Target Tracking (ETT), within the Linnaeus environment CADICS and the excellence network ELLIIT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freddie Åström .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Åström, F., Felsberg, M. (2015). On the Choice of Tensor Estimation for Corner Detection, Optical Flow and Denoising. In: Jawahar, C., Shan, S. (eds) Computer Vision - ACCV 2014 Workshops. ACCV 2014. Lecture Notes in Computer Science(), vol 9009. Springer, Cham. https://doi.org/10.1007/978-3-319-16631-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16631-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16630-8

  • Online ISBN: 978-3-319-16631-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics