Residual Implications from Discrete Uninorms. A Characterization | SpringerLink
Skip to main content

Residual Implications from Discrete Uninorms. A Characterization

  • Chapter
  • First Online:
Enric Trillas: A Passion for Fuzzy Sets

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 322))

Abstract

The operators defined on a finite chain, usually called discrete operators, constitute a field of increasing interest because of their applications to qualitative aggregation and computing with words. We introduce in this paper the residual implications derived from discrete uninorms, we look at their most interesting properties and their axiomatic characterization is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aguiló, I., Suñer, J., Torrens, J.: A characterization of residual implications derived from left-continuous uninorms. Inf. Sci. 180, 3992–4005 (2010)

    Article  MATH  Google Scholar 

  2. Baczyński, M., Jayaram, M.: Fuzzy Implications. Studies in Fuzziness and Soft Computing, vol. 231. Springer, Berlin (2008)

    Google Scholar 

  3. De Baets, B., Fodor, J.C.: Residual operators of uninorms. Soft Comput. 3, 89–100 (1999)

    Article  Google Scholar 

  4. De Baets, B., Fodor, J., Ruiz-Aguilera, D., Torrens, J.: Idempotent uninorms on finite ordinal scales. Int. J. Uncertain. Fuzziness Knowl. -Based Syst. 17, 1–14 (2009)

    Article  MATH  Google Scholar 

  5. Baets, de. B., Mesiar, R.: Discrete triangular norms. In: Rodabaugh, S., Klement, E.-P.(eds.) Topological and Algebraic Structures in Fuzzy Sets, A Handbook of Recent Developments in the Mathematics of Fuzzy Sets. Trends in Logic, vol. 20, pp. 389–400, Kluwer Academic Publishers (2003)

    Google Scholar 

  6. Durante, F., Klement, E., Mesiar, R., Sempi, C.: Conjunctors and their residual implicators: characterizations and construction methods. Mediterr. J. Math. 4, 343–356 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fodor, J.C.: Smooth associative operations on finite ordinal scales. IEEE Trans. Fuzzy Syst. 8, 791–795 (2000)

    Article  Google Scholar 

  8. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms, in the collection: Trends in Logic—Studi Logica Library. vol. 8, Kluwer Academic Publishers (2000)

    Google Scholar 

  9. Kolesárová, A., Mayor, G., Mesiar, R.: Weighted ordinal means. Inf. Sci. 177, 3822–3830 (2007)

    Article  MATH  Google Scholar 

  10. Mas, M., Mayor, G., Torrens, J.: \(t-\)Operators and uninorms on a finite totally ordered set. Int. J. Intell. Syst. 14, 909–922 (1999)

    Article  MATH  Google Scholar 

  11. Mas, M., Monserrat, M., Torrens, J.: S-implications and R-implications on a finite chain. Kybernetica 40, 3–20 (2004)

    MATH  MathSciNet  Google Scholar 

  12. Mas, M., Monserrat, M., Torrens, J.: On two types of discrete implications. Int. J. Approx. Reson. 40, 262–279 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mas, M., Monserrat, M., Torrens, J.: Two types of implications derived from uninorms. Fuzzy Sets Syst. 158, 2612–2626 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Mas, M., Monserrat, M., Torrens, J.: Smooth aggregation functions on finite scales. In: Hüllermeier, E., Kruse, T., Hoffmann, F. (eds.) LNAI, vol. 6178, pp. 398–407, Dortmund, (2010)

    Google Scholar 

  15. Mas, M., Monserrat, M., Torrens, J.: Kernel aggregation functions on finite scales. Constructions from their marginals. Fuzzy Sets Syst. 241, 27–40 (2014)

    Google Scholar 

  16. Mas, M., Monserrat, M., Torrens, J., Trillas, E.: A survey on fuzzy implications functions. IEEE Trans. fuzzy Syst. 15, 1107–1121 (2007)

    Article  Google Scholar 

  17. Mayor, G., Suñer, J., Torrens, J.: Copula-like operations on finite settings. IEEE Trans. Fuzzy Syst. 13, 468–477 (2005)

    Article  Google Scholar 

  18. Mayor, G., Torrens, J.: On a class of operators for expert systems. Int. J. Intell. Syst. 8, 771–778 (1993)

    Article  MATH  Google Scholar 

  19. Mayor, G., Torrens, J.: Triangular norms in discrete settings. In: Klement, E.P., Mesiar, R. (eds.) Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms, pp. 189–230. Elsevier, Amsterdam (2005)

    Chapter  Google Scholar 

  20. Ouyang, Y.: On fuzzy implications determined by aggregation operators. Inf. Sci. 193, 153–162 (2012)

    Article  MATH  Google Scholar 

  21. Ruiz, D., Torrens, J.: Residual implications and co-implications from idempotent uninorms. Kybernetika 40, 21–38 (2004)

    MATH  MathSciNet  Google Scholar 

  22. Ruiz-Aguilera, D., Torrens, J.: R-implications and S-implications from uninorms continuous in \(]0;1[^2\) and their distributivity over uninorms. Fuzzy Sets Syst. 160, 832–852 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Trillas, E., Mas, M., Monserrat, M., Torrens, J.: On the representation of fuzzy rules. Int. J. Approx. Reason. 48, 583–597 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

It was our pleasure to jointly work with Professor Enric Trillas in some aspects of fuzzy implication functions. We would like to bring him this work with our respect and admiration. This paper has been partially supported by the Spanish Grants MTM2009-10320 and TIN2013-42795-P, both with FEDER support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Torrens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mas, M., Mayor, G., Monserrat, M., Torrens, J. (2015). Residual Implications from Discrete Uninorms. A Characterization. In: Magdalena, L., Verdegay, J., Esteva, F. (eds) Enric Trillas: A Passion for Fuzzy Sets. Studies in Fuzziness and Soft Computing, vol 322. Springer, Cham. https://doi.org/10.1007/978-3-319-16235-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16235-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16234-8

  • Online ISBN: 978-3-319-16235-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics