Abstract
This paper forces to think critically about the actual list of developed statistics to measure the information diffusion in complex networks, for example about universally popular structural-based performance metrics and especially lately about dynamic performance metrics. Therefore, somewhat similar to the latter yet an alternative set of measurements for diffusion process is proposed, i.e. the scope, speed and failure of spread. Particular attention is paid to analyse measures for generic diffusion-based algorithm using pull strategy and the time–to–recovery parameter in large social networks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bounova, G., de Weck, O.: Overview of metrics and their correlation patterns for multiple-metric topology analysis on heterogeneous graph ensembles. Phys. Rev. E 85, 016117 (2012)
Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature 464(7291), 1025–1028 (2010)
Chakrabarti, D., Wang, Y., Wang, C., Leskovec, J., Faloutsos, C.: Epidemic thresholds in real networks. ACM Trans. Inf. Syst. Secur. 10(4), 1–26 (2008)
Dodds, P.S., Watts, D.J.: A generalized model of social and biological contagion. Journal of Theoretical Biology 232(4), 587–604 (2005)
Erdös, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960)
Goyal, A., Bonchi, F., Lakshmanan, L.V.: Learning influence probabilities in social networks. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, WSDM 2010, pp. 241–250. ACM, New York (2010)
Granovetter, M.: Threshold models of collective behavior. American Journal of Sociology 83(6), 1420–1443 (1978)
Jacquez, J.A., O’Neill, P.: Reproduction numbers and thresholds in stochastic epidemic models. i. homogeneous populations. Math. Biosciences 107(2), 161–186 (1991)
Kitsak, M., Gallos, L.K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H.E., Makse, H.A.: Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888–893 (2010)
Król, D.: On modelling social propagation phenomenon. In: Nguyen, N.T., Attachoo, B., Trawiński, B., Somboonviwat, K. (eds.) ACIIDS 2014, Part II. LNCS, vol. 8398, pp. 227–236. Springer, Heidelberg (2014)
Król, D.: Propagation phenomenon in complex networks: Theory and practice. New Generation Computing 32(3–4), 187–192 (2014)
Król, D., Budka, M., Musiał, K.: Simulating the information diffusion process in complex networks using push and pull strategies. In: Proceedings of the European Network Intelligence Conference, ENIC 2014, pp. 1–8. IEEE, New York (2014)
Sun, J., Tang, J.: A survey of models and algorithms for social influence analysis. In: Aggarwal, C.C. (ed.) Social Network Data Analytics, pp. 177–214. Springer, US (2011)
Wang, C., Lizardo, O., Hachen, D.: Algorithms for generating large-scale clustered random graphs. Network Science 2, 403–415 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Król, D. (2015). How to Measure the Information Diffusion Process in Large Social Networks?. In: Nguyen, N., Trawiński, B., Kosala, R. (eds) Intelligent Information and Database Systems. ACIIDS 2015. Lecture Notes in Computer Science(), vol 9011. Springer, Cham. https://doi.org/10.1007/978-3-319-15702-3_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-15702-3_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-15701-6
Online ISBN: 978-3-319-15702-3
eBook Packages: Computer ScienceComputer Science (R0)