How to Measure the Information Diffusion Process in Large Social Networks? | SpringerLink
Skip to main content

How to Measure the Information Diffusion Process in Large Social Networks?

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9011))

Included in the following conference series:

Abstract

This paper forces to think critically about the actual list of developed statistics to measure the information diffusion in complex networks, for example about universally popular structural-based performance metrics and especially lately about dynamic performance metrics. Therefore, somewhat similar to the latter yet an alternative set of measurements for diffusion process is proposed, i.e. the scope, speed and failure of spread. Particular attention is paid to analyse measures for generic diffusion-based algorithm using pull strategy and the time–to–recovery parameter in large social networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bounova, G., de Weck, O.: Overview of metrics and their correlation patterns for multiple-metric topology analysis on heterogeneous graph ensembles. Phys. Rev. E 85, 016117 (2012)

    Article  Google Scholar 

  2. Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature 464(7291), 1025–1028 (2010)

    Article  Google Scholar 

  3. Chakrabarti, D., Wang, Y., Wang, C., Leskovec, J., Faloutsos, C.: Epidemic thresholds in real networks. ACM Trans. Inf. Syst. Secur. 10(4), 1–26 (2008)

    Article  Google Scholar 

  4. Dodds, P.S., Watts, D.J.: A generalized model of social and biological contagion. Journal of Theoretical Biology 232(4), 587–604 (2005)

    Article  MathSciNet  Google Scholar 

  5. Erdös, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960)

    MATH  Google Scholar 

  6. Goyal, A., Bonchi, F., Lakshmanan, L.V.: Learning influence probabilities in social networks. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, WSDM 2010, pp. 241–250. ACM, New York (2010)

    Google Scholar 

  7. Granovetter, M.: Threshold models of collective behavior. American Journal of Sociology 83(6), 1420–1443 (1978)

    Article  Google Scholar 

  8. Jacquez, J.A., O’Neill, P.: Reproduction numbers and thresholds in stochastic epidemic models. i. homogeneous populations. Math. Biosciences 107(2), 161–186 (1991)

    Article  MATH  Google Scholar 

  9. Kitsak, M., Gallos, L.K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H.E., Makse, H.A.: Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888–893 (2010)

    Article  Google Scholar 

  10. Król, D.: On modelling social propagation phenomenon. In: Nguyen, N.T., Attachoo, B., Trawiński, B., Somboonviwat, K. (eds.) ACIIDS 2014, Part II. LNCS, vol. 8398, pp. 227–236. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  11. Król, D.: Propagation phenomenon in complex networks: Theory and practice. New Generation Computing 32(3–4), 187–192 (2014)

    Article  Google Scholar 

  12. Król, D., Budka, M., Musiał, K.: Simulating the information diffusion process in complex networks using push and pull strategies. In: Proceedings of the European Network Intelligence Conference, ENIC 2014, pp. 1–8. IEEE, New York (2014)

    Google Scholar 

  13. Sun, J., Tang, J.: A survey of models and algorithms for social influence analysis. In: Aggarwal, C.C. (ed.) Social Network Data Analytics, pp. 177–214. Springer, US (2011)

    Google Scholar 

  14. Wang, C., Lizardo, O., Hachen, D.: Algorithms for generating large-scale clustered random graphs. Network Science 2, 403–415 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz Król .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Król, D. (2015). How to Measure the Information Diffusion Process in Large Social Networks?. In: Nguyen, N., Trawiński, B., Kosala, R. (eds) Intelligent Information and Database Systems. ACIIDS 2015. Lecture Notes in Computer Science(), vol 9011. Springer, Cham. https://doi.org/10.1007/978-3-319-15702-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15702-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15701-6

  • Online ISBN: 978-3-319-15702-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics