Trajectory Controllability of Semilinear Systems with Delay | SpringerLink
Skip to main content

Trajectory Controllability of Semilinear Systems with Delay

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9011))

Included in the following conference series:

Abstract

The finite-dimensional dynamical control system described by scalar semilinear ordinary differential state equation with delay is considered in this paper. The semilinear state equation contains both nonlinear perturbations and pure linear part. The concept of relative controllability on trajectory relative controllability for systems with point delay in control and in nonlinear term was extended. Finally, the remarks and comments on the relationships between different concepts of controllability were presented and the possible extensions proposed.

The research presented here were done by the authors as parts of the projects funded by the National Science Centre granted according to decisions DEC-2012/05/B/ST7/00065, DEC-2012/07/B/ST7/01404, DEC-2012/07/N/ST7/03236 and DEC-2014/13/B/ST7/00755, respectively. The calculations were performed with the use of IT infrastructure of GeCONiI Upper Silesian Centre for Computational Science and Engineering (NCBiR grant no POIG.02.03.01-24-099/13).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Klamka, J.: Controllability of Dynamical Systems. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  2. Ge, S.S., Sun, Z., Lee, T.H.: Reachability and controllability of switched linear discrete-time system. IEEE Transactions on Automatic Control AC–46(9), 1437–1441 (2001)

    Article  MathSciNet  Google Scholar 

  3. Qiao, Y., Cheng, D.: On partitioned controllability of switched linear systems. Automatica 45(1), 225–229 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Sikora, B., Klamka, J.: On constrained stochastic controllability of dynamical systems with multiple delays in control. Bulletin of the Polish Academy of Sciences-Technical Sciences 60(2), 301–305 (2012)

    Google Scholar 

  5. Klamka, J.: Controllability of dynamical systems. A survey, Bulletin of the Polish Academy of Sciences - Technical Sciences 61(2), 335–342 (2013)

    Google Scholar 

  6. Klamka, J., Czornik, A., Niezabitowski, M.: Stability and controllability of switched systems. Bulletin of the Polish Academy of Sciences - Technical Sciences 61(3), 547–555 (2013)

    Article  Google Scholar 

  7. Klamka, J.: Relative and absolute controllability of discrete systems with delays in control. International Journal of Control 26(1), 65–74 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kaczorek, T.: Minimum energy control of fractional positive continuous-time linear systems. Bulletin of the Polish Academy of Sciences-Technical Sciences 61(4), 803–807 (2013)

    Article  Google Scholar 

  9. Balachandran, K., Kokila, J.: On the controllability of fractional dynamical systems. International Journal of Applied Mathematics and Computer Science 22(3), 523–531 (2012)

    MATH  MathSciNet  Google Scholar 

  10. Kaczorek, T.: Minimum energy control of positive continuous-time linear systems with bounded inputs. International Journal of Applied Mathematics and Computer Science 23(4), 725–730 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kaczorek, T.: Minimum energy control of fractional positive continuous-time linear systems. In: Proceedings of 18th International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, Poland, pp. 622–626 (2013)

    Google Scholar 

  12. Kaczorek, T.: An extension of Klamka’s method of minimum energy control to fractional positive discrete-time linear systems with bounded inputs. Bulletin of the Polish Academy of Sciences-Technical Sciences 62(2), 227–231 (2014)

    Article  MathSciNet  Google Scholar 

  13. Kaczorek, T.: Minimum energy control of fractional positive continuous-time linear systems with bounded inputs. International Journal of Applied Mathematics and Computer Science 24(2), 335–340 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kaczorek, T.: Minimum energy control of positive fractional descriptor continuous-time linear systems. Iet Control Theory and Applications 8(4), 219–225 (2014)

    Article  MathSciNet  Google Scholar 

  15. Kaczorek, T.: Necessary and sufficient conditions for the minimum energy control of positive discrete-time linear systems with bounded inputs. Bulletin of the Polish Academy of Sciences-Technical Sciences 62(1), 85–89 (2014)

    Article  Google Scholar 

  16. Kaczorek, T.: A new formulation and solution of the minimum energy control problem of positive 2D continuous-discrete linear systems. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Recent Advances in Automation, Robotics and Measuring Techniques. AISC, vol. 267, pp. 103–114. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  17. Kaczorek, T.: Minimum energy control of descriptor positive discrete-time linear systems. Compel - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering 33(3), 976–988 (2014)

    Article  MathSciNet  Google Scholar 

  18. Klamka, J.: Approximate controllability of second order dynamical systems. Applied Mathematics and Computer Science 2(1), 135–146 (1992)

    MATH  MathSciNet  Google Scholar 

  19. Liu, X., Liu, Z., Bin, M.: Approximate controllability of impulsive fractional neutral evolution equations with Riemann-Liouville fractional derivatives. Journal of Computational Analysis and Applications 17(3), 468–485 (2014)

    MATH  MathSciNet  Google Scholar 

  20. Tao, Q., Gao, H., Zhang, B.: Approximate controllability of a parabolic integrodifferential equation. Mathematical Methods in the Applied Sciences 37(15), 2236–2244 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  21. Debbouche, A., Torres, D.: Approximate controllability of fractional delay dynamic inclusions with nonlocal control conditions. Applied Mathematics and Computation 243, 161–175 (2014)

    Article  MathSciNet  Google Scholar 

  22. Mokkedem, F., Fu, X.: Approximate controllability of semi-linear neutral integro-differential systems with finite delay. Applied Mathematics and Computation 242, 202–215 (2014)

    Article  MathSciNet  Google Scholar 

  23. Boyer, F., Olive, G.: Approximate controllability conditions for some linear 1d parabolic systems with space-dependent coefficients. Mathematical Control and Related Fields 4(3), 263–287 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  24. Shen, L., Wu, Q.: Approximate controllability of nonlinear stochastic impulsive systems with control acting on the nonlinear terms. International Journal of Control 87(8), 1672–1680 (2014)

    Article  MathSciNet  Google Scholar 

  25. Boulite, S., Bouslous, H., El Azzouzi, M., Maniar, L.: Approximate positive controllability of positive boundary control systems. Positivity 18(2), 375–393 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  26. Ji, S.: Approximate controllability of semilinear nonlocal fractional differential systems via an approximating method. Applied Mathematics and Computation 236, 43–53 (2014)

    Article  MathSciNet  Google Scholar 

  27. Fu, X., Lu, J., You, Y.: Approximate controllability of semilinear neutral evolution systems with delay. International Journal of Control 87(4), 665–681 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  28. Guendouzi, T., Bousmaha, L.: Approximate Controllability of Fractional Neutral Stochastic Functional Integro-Differential Inclusions with Infinite Delay. Qualitative Theory of Dynamical Systems 13(1), 89–119 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  29. Fujishiro, K., Yamamoto, M.: Approximate controllability for fractional diffusion equations by interior control. Applicable Analysis 93(9), 1793–1810 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  30. Sakthivel, R., Ganesh, R., Anthoni, S.: Approximate controllability of fractional nonlinear differential inclusions. Applied Mathematics and Computation 225, 708–717 (2013)

    Article  MathSciNet  Google Scholar 

  31. Wang, Y., Qi, A.: A Lyapunov Characterization of Asymptotic Controllability for Nonlinear Switched Systems. Bulletin of the Korean Mathematical Society 51(1), 1–11 (2014)

    Article  MathSciNet  Google Scholar 

  32. Motta, M., Rampazzo, F.: Asymptotic controllability and optimal control. Journal of Differential Equations 254(7), 2744–2763 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  33. Cai, X., Wang, X., Xu, X.: Asymptotic controllability of a class of discrete-time systems with disturbances. Journal of Systems Engineering and Electronics 20(6), 1296–1300 (2009)

    MATH  Google Scholar 

  34. Tsinias, J.: Remarks on Asymptotic Controllability and Sampled-Data Feedback Stabilization for Autonomous Systems. IEEE Transactions on Automatic Control 55(3), 721–726 (2010)

    Article  MathSciNet  Google Scholar 

  35. Davison, E.J., Kunze, E.: C.: Controllability of Integro-Differential Systems in Banach Space. SIAM Journal on Control and Optimization 8(1), 489–497 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  36. Wan, X., Sun, J.: Complete controllability for abstract measure differential systems. International Journal of Robust and Nonlinear Control 23(7), 807–814 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  37. Khartovskii, V.E., Pavlovskaya, A.T.: Complete controllability and controllability for linear autonomous systems of neutral type. Automation and Remote Control 74(5), 769–784 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  38. DAlessandro, D.: Equivalence between indirect controllability and complete controllability for quantum systems. Systems and Control Letters 62(2), 188–193 (2013)

    Article  MathSciNet  Google Scholar 

  39. Khartovskii, V.E.: Complete controllability problem and its generalization for linear autonomous systems of neutral type. Journal of Computer and Systems Sciences International 51(6), 755–769 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  40. Wang, J., Zhou, Y.: Complete controllability of fractional evolution systems. Communications in Nonlinear Science and Numerical Simulation 17(11), 4346–4355 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  41. Semenov, Y.M.: On the complete controllability of linear nonautonomous systems. Differential Equations 48(9), 1245–1257 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  42. Yang, S., Shi, B., Zhang, Q.: Complete controllability of nonlinear stochastic impulsive functional systems. Applied Mathematics and Computation 218(9), 5543–5551 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  43. Sakthivel, R., Ren, Y.: Complete controllability of stochastic evolution equations with jumps. Reports on Mathematical Physics 68(2), 163–174 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  44. Shen, L., Shi, J., Sun, J.: Complete controllability of impulsive stochastic integro-differential systems. Automatica 46(6), 1068–1073 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  45. Berrahmoune, L.: A variational approach to constrained controllability for distributed system. Journal of Mathematical Analysis and Applications 416(2), 805–823 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  46. Balachandran, K., Kokila, J.: Constrained Controllability of Fractional Dynamical Systems. Numerical Functional Analysis and Optimization 34(11), 1187–1205 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  47. Karthikeyan, S., Balachandran, K.: Constrained Controllability of Nonlinear Stochastic Impulsive Systems. International Journal of Applied Mathematics and Computer Science 21(2), 307–316 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  48. El Hassan, Z., Fatima, G.: Regional Constrained Controllability Problem: Approaches and Simulations. International Journal of Control Automation and Systems 7(2), 297–304 (2009)

    Article  Google Scholar 

  49. George, R.K., Chalishajar, D.N., Nandakunaran, A.K.: Exact Controllability of Nonlinear Third Order Dispersion Equation. Journal of Mathematical Analysis and Applications 332(2), 1028–1044 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  50. Lu, X., Tu, Z., Lv, X.: On the exact controllability of hyperbolic magnetic Schrodinger equations. Nonlinear Analysis - Theory Methods and Applications 109, 319–340 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  51. Morancey, M.: Simultaneous local exact controllability of 1D bilinear Schrodinger equations. Annales de L Institut Henri Poincare-Analyse Non Lineaire 31(3), 501–529 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  52. Lu, Q.: Exact Controllability for Stochastic Transport Equations. SIAM Journal on Control and Optimization 52(1), 397–419 (2014)

    Article  MathSciNet  Google Scholar 

  53. Lu, Q.: Exact controllability for stochastic Schrodinger equations. Journal of Differential Equations 255(8), 2484–2504 (2013)

    Article  MathSciNet  Google Scholar 

  54. Zeng, Y., Xie, Z., Guo, F.: On exact controllability and complete stabilizability for linear systems. Applied Mathematics Letters 26(7), 766–768 (2013)

    Article  MathSciNet  Google Scholar 

  55. Zheng, C., Zhou, Z.: Exact controllability for the fourth order Schrodinger equation. Chinese Annals of Mathematics Series B 33(3), 395–404 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  56. Leugering, G., Schmidt, E.J.P.G.: On Exact Controllability of Networks of Nonlinear Elastic Strings in 3-Dimensional Space. Chinese Annals of Mathematics Series B 33(1), 33–60 (2012)

    Article  MathSciNet  Google Scholar 

  57. Duan, S., Hu, J., Li, Y.: Exact Controllability of Nonlinear Stochastic Impulsive Evolution Differential Inclusions with Infinite Delay in Hilbert Spaces. International Journal of Nonlinear Sciences and Numerical Simulation 12(1–8), 23–33 (2011)

    MathSciNet  Google Scholar 

  58. Li, T., Rao, B.: Strong (Weak) Exact Controllability and Strong (Weak) Exact Observability for Quasilinear Hyperbolic Systems. Chinese Annals of Mathematics Series B 31(5), 723–742 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  59. Sasu, A.L.: On exact controllability of variational discrete systems. Applied Mathematics Letters 23(1), 101–104 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  60. Ge, Z.Q., Zhu, G.T., Feng, D.X.: Exact controllability for singular distributed parameter system in Hilbert space. Science in China Series F-Information Sciences 52(11), 2045–2052 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  61. Zhirabok, A., Shumsky, A.: Approach to the analysis of observability and controllability in nonlinear systems via linear methods. International Journal of Applied Mathematics and Computer Science 22(3), 507–522 (2012)

    MATH  MathSciNet  Google Scholar 

  62. Chen, H., Sun, J.: A new approach for global controllability of higher order Boolean control network. Neural Networks 39, 12–17 (2013)

    Article  Google Scholar 

  63. De Leo, M., de la Vega, F., Constanza, S., Rial, D.: Global controllability of the 1d schrodinger-poisson equation. Revista de la Union Matematica Argentina 54(1), 43–54 (2013)

    MATH  MathSciNet  Google Scholar 

  64. Ibrahim, R.W.: Global controllability of a set of fractional differential equations. Miskolc Mathematical Notes 12(1), 51–60 (2011)

    MATH  MathSciNet  Google Scholar 

  65. Sun, Y.: Global controllability for a class of 4-dimensional affine nonlinear systems. In: Proceedings of the 30th Chinese Control Conference, Yantai, Peoples R. China, 22–24.07.2011, pp. 397–400 (2011)

    Google Scholar 

  66. Laurent, C.: Global controllability and stabilization for the nonlinear schrodinger equation on an interval. Esaim-Control Optimisation and Calculus of Variations 16(2), 356–379 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  67. Fernandez-Cara, E., Santos, M.C.: Numerical null controllability of the 1D linear Schrodinger equation. Systems and Control Letters 73, 33–41 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  68. Tao, Q., Gao, H., Yao, Z.: Null controllability of a pseudo-parabolic equation with moving control. Journal of Mathematical Analysis and Applications 418(2), 998–1005 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  69. Lu, Q., Zuazua, E.: Robust null controllability for heat equations with unknown switching control mode. Discrete and Continuous Dynamical Systems 34(10), 4183–4210 (2014)

    Article  MathSciNet  Google Scholar 

  70. Shklyar, B.: Exact null-controllability of evolution equations by smooth scalar distributed controls and applications to controllability of interconnected systems. Applied Mathematics and Computation 238, 444–459 (2014)

    Article  MathSciNet  Google Scholar 

  71. Fernandez-Cara, E., Limaco, J., de Menezes, S.B.: Null controllability for a parabolic-elliptic coupled system. Bulletin of the Brazilian Mathematical Society 44(2), 285–308 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  72. Mahmudov, N.I.: Exact null controllability of semilinear evolution systems. Journal of Global Optimization 56(2), 317–326 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  73. Louis-Rose, C.: Simultaneous null controllability with constraint on the control. Applied Mathematics and Computation 219(11), 6372–6392 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  74. Debbouche, A., Baleanu, D.: Exact Null Controllability for Fractional Nonlocal Integrodifferential Equations via Implicit Evolution System. Journal of Applied Mathematics, art. no. 931975 (2012)

    Google Scholar 

  75. Tenenbaum, G., Tucsnak, M.: On the Null-Controllability of Diffusion Equations. Esaim-Control Optimisation and Calculus of Variations 17(4), 1088–1100 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  76. Reissig, G., Hartung, C., Svaricek, F.: Strong Structural Controllability and Observability of Linear Time-Varying Systems. IEEE Transactions on Automatic Control 59(11), 3087–3092 (2014)

    Article  MathSciNet  Google Scholar 

  77. Hartung, Ch., Reissig, G., Svaricek, F.: Necessary conditions for structural and strong structural controllability of linear time-varying systems. In: Proceedings of the European Control Conference (ECC), Zurich, Switzerland 17–19.07.2013, pp. 1335–1340 (2013)

    Google Scholar 

  78. Liu, X., Lin, H., Chen, B.: Structural controllability of switched linear systems. Automatica 49(12), 3531–3537 (2013)

    Article  MathSciNet  Google Scholar 

  79. Hartung, Ch., Reissig, G., Svaricek, F.: Sufficient conditions for strong structural controllability of uncertain linear time-varying systems. In: Proceedings of the American Control Conference (ACC), Washington, DC, 17–19.06.2013, pp. 5875–5880 (2013)

    Google Scholar 

  80. Hartung, Ch., Reissig, G., Svaricek, F.: Characterization of strong structural controllability of uncertain linear time-varying discrete-time systems. In: Proceedings of the 51st IEEE Annual Conference on Decision and Control (CDC), HI, 10–13.12.2012, pp. 2189–2194 (2012)

    Google Scholar 

  81. Chalishajar, D.N., George, R.K., Nandakumaran, A.K., Acharya, F.S.: Trajectory controllability of nonlinear integro-differential system. Journal of the Franklin Institute 347, 1065–1075 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  82. Klamka, J., Niezabitowski, M.: Trajectory controllability of semilinear systems with multiple variable delays in control. In: Proceedings of the ICNPAA 2014 World Congress: 10th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences, 15–18.07.2014, Narvik, Norway, 1637, pp. 498–503 (2014)

    Google Scholar 

  83. Klamka, J., Ferenstein, E., Babiarz, A., Czornik, A., Niezabitowski, M.: Trajectory controllability of semilinear systems with delay in control and state. In: Proceedings of the 2nd International Conference on Control, Mechatronics and Automation, Dubai, United Arab Emirates, 08–10.12.2014

    Google Scholar 

  84. Klamka, J.: Constrained controllability of semilinear systems with delayed controls. Bulletin of the Polish Academy of Sciences - Technical Sciences 56(4), 333–337 (2008)

    Google Scholar 

  85. Kaczorek, T.: Computation of realizations of discrete-time cone-systems. Bulletin of the Polish Academy of Sciences - Technical Sciences 54(3), 347–350 (2006)

    MATH  Google Scholar 

  86. Czornik, A., Swierniak, A.: On controllability with respect to the expectation of discrete time jump linear systems. Journal of the Franklin Institute 338, 443–453 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  87. Czornik, A., Swierniak, A.: On direct controllability of discrete time jump linear system. Journal of the Franklin Institute-Engineering and Applied Mathematics 341(6), 491–503 (2004)

    Article  MathSciNet  Google Scholar 

  88. Czornik, A., Swierniak, A.: Controllability of Discrete Time Jump Linear Systems. Dynamics of Continuous, Siscrete and Impulsive Systems, B: Applications and Algorithms 12(2), 165–191 (2005)

    MATH  MathSciNet  Google Scholar 

  89. Czornik, A., Niezabitowski, M.: Controllability and stability of switched systems. In: 18th International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, Poland, pp. 16–21 (2013)

    Google Scholar 

  90. Klamka, J., Niezabitowski, M.: Controllability of switched linear dynamical systems. In: 18th International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, Poland, pp. 464–467 (2013)

    Google Scholar 

  91. Klamka, J., Czornik, A., Niezabitowski, M., Babiarz, A.: Controllability and minimum energy control of linear fractional discrete-time infinite-dimensional systems. In: 11th IEEE International Conference on Control & Automation, Taichung, Taiwan, pp. 1210–1214 (2014)

    Google Scholar 

  92. Kaczorek, T.: Fractional positive continuous-time systems and their reachability. International Journal of Applied Mathematics and Computer Science 18(2), 223–228 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  93. Klamka, J., Niezabitowski, M.: Controllability of switched infinite-dimensional linear dynamical systems. In: 19th International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, Poland, pp. 171–175 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Niezabitowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Klamka, J., Czornik, A., Niezabitowski, M., Babiarz, A. (2015). Trajectory Controllability of Semilinear Systems with Delay. In: Nguyen, N., Trawiński, B., Kosala, R. (eds) Intelligent Information and Database Systems. ACIIDS 2015. Lecture Notes in Computer Science(), vol 9011. Springer, Cham. https://doi.org/10.1007/978-3-319-15702-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15702-3_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15701-6

  • Online ISBN: 978-3-319-15702-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics