Abstract
In the first part of this paper we present a short survey on the problem of the representation of rational normal curves as set-theoretic complete intersections. In the second part we use a method, introduced by Robbiano and Valla, to prove that the rational normal quartic is set-theoretically complete intersection of quadrics: it is an original proof of a classical result of Perron, and Gallarati-Rollero.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Badescu, L., Valla, G.: Grothendieck-Lefschetz theory, set-theoretic complete intersections and rational normal scrolls. J. Algebra 324, 1636–1655 (2010)
Barile, M.: Certain minimal varieties are set-theoretic complete intersections. Comm. Algebra 35(7), 2082–2095 (2007)
Barile, M.: On binomial set-theoretic complete intersections in characteristic \(p\). Rev. Mat. Complut. 21(1), 265–282 (2008)
Barile, M., Lyubeznik, G.: Set-theoretic complete intersections in characteristic \(p\). Proc. Am. Math. Soc. 133(11), 3199–3209 (2005)
Barile, M., Morales, M., Apostolos, A.: Set-theoretic complete intersections on binomials. Proc. Am. Math. Soc. 130(7), 1893–1903 (2002)
Gallarati, D., Rollero, A.: Una osservazione sulle curve razionali normali. Atti dell’Accademia Ligure di Scienze e Lettere XLV, 131–132 (1988)
Kreuzer, M., Robbiano, L.: Computational Commutative Algebra, vol. 1. Springer, Heidelberg (2000)
Kreuzer, M., Robbiano, L.: Computational Commutative Algebra, vol. 2. Springer, Heidelberg (2005)
Moh, T.T.: A result on the set-theoretic complete intersection problem. Proc. Am. Math. Soc. 86(1), 19–20 (1982)
Moh, T.T.: Set-theoretic complete intersections. Proc. Am. Math. Soc. 94(2), 217–220 (1985)
Ohm, J.: Space curves as ideal-theoretic complete intersections. In: Seidenberg, A. (ed.) Studies in Mathematics, vol. 20, pp. 47–115. Math. Assoc. Amer., Washington, DC (1980)
Perron, O.: Über die Bedingungen, daß eine binäre Form \(n\)-ten Grades eine \(n\)-te Potenz ist, und über die rationale Kurve \(n\)-ter Ordnung im \(\mathbb{R}_n\). Math. Ann. 118, 305–309 (1941/1943)
Robbiano, L.: A problem of complete intersections. Nagoya Math. J. 52, 129–132 (1973)
Robbiano, L.: Some properties of complete intersections in “good” projective varieties. Nagoya Math. J. 61, 103–111 (1976)
Robbiano, L., Valla, G.: Some curves in \(\mathbb{P}^3\) are set-theoretic complete intersections. In: Ciliberto, C., Ghione, E., Orecchia, F. (eds.) Algebraic Geometry — Open Problems. LNCS, vol. 997, pp. 391–399. Springer, Heidelberg (1983)
Robbiano, L., Valla, G.: On set-theoretic complete intersections in the projective space. Milan J. Math. 53, 333–346 (1983)
Schenzel, P., Vogel, W.: On set-theoretic intersections. J. Algebra 48(2), 401–408 (1977)
Schmitt, T., Vogel, W.: Note on set-theoretic intersections of subvarieties of projective space. Math. Ann. 245(3), 247–253 (1979)
Verdi, L.: Le curve razionali normali come intersezioni complete insiemistiche. Bollettino U.M.I. 16–A, 385–390 (1979)
Acknowledgements
I would like to thank Prof. D. Gallarati for bringing my attention to his paper [6], a joint work with Prof. A. Rollero, allowing me to write these notes. I deeply thank Prof. L. Robbiano and Prof. M. C. Beltrametti for numerous helpful discussions on the topic.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Torrente, ML. (2015). Rational Normal Curves as Set-Theoretic Complete Intersections of Quadrics. In: Gutierrez, J., Schicho, J., Weimann, M. (eds) Computer Algebra and Polynomials. Lecture Notes in Computer Science(), vol 8942. Springer, Cham. https://doi.org/10.1007/978-3-319-15081-9_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-15081-9_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-15080-2
Online ISBN: 978-3-319-15081-9
eBook Packages: Computer ScienceComputer Science (R0)