Rational Normal Curves as Set-Theoretic Complete Intersections of Quadrics | SpringerLink
Skip to main content

Rational Normal Curves as Set-Theoretic Complete Intersections of Quadrics

  • Chapter
  • First Online:
Computer Algebra and Polynomials

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8942))

  • 1959 Accesses

Abstract

In the first part of this paper we present a short survey on the problem of the representation of rational normal curves as set-theoretic complete intersections. In the second part we use a method, introduced by Robbiano and Valla, to prove that the rational normal quartic is set-theoretically complete intersection of quadrics: it is an original proof of a classical result of Perron, and Gallarati-Rollero.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5491
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 6864
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Badescu, L., Valla, G.: Grothendieck-Lefschetz theory, set-theoretic complete intersections and rational normal scrolls. J. Algebra 324, 1636–1655 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barile, M.: Certain minimal varieties are set-theoretic complete intersections. Comm. Algebra 35(7), 2082–2095 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barile, M.: On binomial set-theoretic complete intersections in characteristic \(p\). Rev. Mat. Complut. 21(1), 265–282 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Barile, M., Lyubeznik, G.: Set-theoretic complete intersections in characteristic \(p\). Proc. Am. Math. Soc. 133(11), 3199–3209 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Barile, M., Morales, M., Apostolos, A.: Set-theoretic complete intersections on binomials. Proc. Am. Math. Soc. 130(7), 1893–1903 (2002)

    Article  MATH  Google Scholar 

  6. Gallarati, D., Rollero, A.: Una osservazione sulle curve razionali normali. Atti dell’Accademia Ligure di Scienze e Lettere XLV, 131–132 (1988)

    MathSciNet  Google Scholar 

  7. Kreuzer, M., Robbiano, L.: Computational Commutative Algebra, vol. 1. Springer, Heidelberg (2000)

    Book  MATH  Google Scholar 

  8. Kreuzer, M., Robbiano, L.: Computational Commutative Algebra, vol. 2. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  9. Moh, T.T.: A result on the set-theoretic complete intersection problem. Proc. Am. Math. Soc. 86(1), 19–20 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  10. Moh, T.T.: Set-theoretic complete intersections. Proc. Am. Math. Soc. 94(2), 217–220 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ohm, J.: Space curves as ideal-theoretic complete intersections. In: Seidenberg, A. (ed.) Studies in Mathematics, vol. 20, pp. 47–115. Math. Assoc. Amer., Washington, DC (1980)

    Google Scholar 

  12. Perron, O.: Über die Bedingungen, daß eine binäre Form \(n\)-ten Grades eine \(n\)-te Potenz ist, und über die rationale Kurve \(n\)-ter Ordnung im \(\mathbb{R}_n\). Math. Ann. 118, 305–309 (1941/1943)

    Google Scholar 

  13. Robbiano, L.: A problem of complete intersections. Nagoya Math. J. 52, 129–132 (1973)

    MATH  MathSciNet  Google Scholar 

  14. Robbiano, L.: Some properties of complete intersections in “good” projective varieties. Nagoya Math. J. 61, 103–111 (1976)

    MATH  MathSciNet  Google Scholar 

  15. Robbiano, L., Valla, G.: Some curves in \(\mathbb{P}^3\) are set-theoretic complete intersections. In: Ciliberto, C., Ghione, E., Orecchia, F. (eds.) Algebraic Geometry — Open Problems. LNCS, vol. 997, pp. 391–399. Springer, Heidelberg (1983)

    Chapter  Google Scholar 

  16. Robbiano, L., Valla, G.: On set-theoretic complete intersections in the projective space. Milan J. Math. 53, 333–346 (1983)

    MATH  MathSciNet  Google Scholar 

  17. Schenzel, P., Vogel, W.: On set-theoretic intersections. J. Algebra 48(2), 401–408 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  18. Schmitt, T., Vogel, W.: Note on set-theoretic intersections of subvarieties of projective space. Math. Ann. 245(3), 247–253 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  19. Verdi, L.: Le curve razionali normali come intersezioni complete insiemistiche. Bollettino U.M.I. 16–A, 385–390 (1979)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank Prof. D. Gallarati for bringing my attention to his paper [6], a joint work with Prof. A. Rollero, allowing me to write these notes. I deeply thank Prof. L. Robbiano and Prof. M. C. Beltrametti for numerous helpful discussions on the topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria-Laura Torrente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Torrente, ML. (2015). Rational Normal Curves as Set-Theoretic Complete Intersections of Quadrics. In: Gutierrez, J., Schicho, J., Weimann, M. (eds) Computer Algebra and Polynomials. Lecture Notes in Computer Science(), vol 8942. Springer, Cham. https://doi.org/10.1007/978-3-319-15081-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15081-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15080-2

  • Online ISBN: 978-3-319-15081-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics