Abstract
Nonmonotonic Multi-Context Systems (MCS) provide a rigorous framework and flexible approach to represent and reason over interlinked, heterogeneous knowledge sources. Not least due to nonmonotonicity, however, an MCS may be inconsistent and resolving inconsistency is a major issue. Notions of diagnosis and inconsistency explanations have been developed for this purpose, considering the information exchange as the primary culprit. To discriminate between different possible solutions, we consider preference-based diagnosis selection. We develop a general meta-reasoning technique, i.e., an MCS transformation capable of full introspection on possible diagnoses, and we present a natural encoding of preferred diagnosis selection on top. Moreover, for the more involved notions of diagnosis utilized, we establish that the complexity does not increase. However, this does not carry over to selecting most preferred diagnoses as the encoding is not polynomial.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bikakis, A., Antoniou, G.: Distributed defeasible contextual reasoning in ambient computing. In: Aarts, E., Crowley, J.L., de Ruyter, B., Gerhäuser, H., Pflaum, A., Schmidt, J., Wichert, R. (eds.) AmI 2008. LNCS, vol. 5355, pp. 308–325. Springer, Heidelberg (2008)
Bikakis, A., Antoniou, G.: Defeasible contextual reasoning with arguments in ambient intelligence. IEEE Trans. Knowl. Data Eng. 22(11), 1492–1506 (2010)
Bikakis, A., Antoniou, G., Hassapis, P.: Strategies for contextual reasoning with conflicts in ambient intelligence. Knowl. Inf. Syst. 27(1), 45–84 (2011)
Brewka, G., Eiter, T.: Equilibria in Heterogeneous Nonmonotonic Multi-Context Systems. In: Proc. 22nd Conf. Artificial Intelligence (AAAI 2007), pp. 385–390. AAAI Press (2007)
Brewka, G., Eiter, T., Fink, M., Weinzierl, A.: Managed multi-context systems. In: Walsh, T. (ed.) Proc. 22nd International Joint Conf. Artificial Intelligence (IJCAI 2011), pp. 786–791. AAAI Press/IJCAI (2011)
Brewka, G., Roelofsen, F., Serafini, L.: Contextual Default Reasoning. In: Veloso, M. (ed.) Proc. 20th International Joint Conf. Artificial Intelligence (IJCAI 2007), pp. 268–273. AAAI Press/IJCAI (2007)
Eiter, T., Fink, M., Schüller, P., Weinzierl, A.: Finding explanations of inconsistency in multi-context systems. Artif. Intell. 216, 233–274 (2014)
Eiter, T., Fink, M., Weinzierl, A.: Preference-based inconsistency assessment in multi-context systems. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 143–155. Springer, Heidelberg (2010)
Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: Semantics and complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 200–212. Springer, Heidelberg (2004)
Giunchiglia, F.: Contextual reasoning. Epistemologia XVI, 345–364 (1993)
McCarthy, J.: Generality in artificial intelligence. Commun. ACM 30(12), 1029–1035 (1987)
Przymusinski, T.: Stable semantics for disjunctive programs. New Generation Computing 9(3), 401–424 (1991)
Tasharrofi, S., Ternovska, E.: Generalized multi-context systems. In: Baral, C., Giacomo, G.D., Eiter, T. (eds.) Proc. 14th International Conf. Principles of Knowledge Representation and Reasoning (KR 2014), pp. 368–377 (2014)
Weinzierl, A.: Inconsistency Management under Preferences for Multi-Context Systems and Extensions. PhD thesis, TU Vienna, A-1040 Vienna, Karlsplatz 13, Austria (October 2014)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Eiter, T., Fink, M., Weinzierl, A. (2015). Preference-Based Diagnosis Selection in Multi-Context Systems. In: Eiter, T., Strass, H., Truszczyński, M., Woltran, S. (eds) Advances in Knowledge Representation, Logic Programming, and Abstract Argumentation. Lecture Notes in Computer Science(), vol 9060. Springer, Cham. https://doi.org/10.1007/978-3-319-14726-0_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-14726-0_16
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-14725-3
Online ISBN: 978-3-319-14726-0
eBook Packages: Computer ScienceComputer Science (R0)