Preference-Based Diagnosis Selection in Multi-Context Systems | SpringerLink
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9060))

Abstract

Nonmonotonic Multi-Context Systems (MCS) provide a rigorous framework and flexible approach to represent and reason over interlinked, heterogeneous knowledge sources. Not least due to nonmonotonicity, however, an MCS may be inconsistent and resolving inconsistency is a major issue. Notions of diagnosis and inconsistency explanations have been developed for this purpose, considering the information exchange as the primary culprit. To discriminate between different possible solutions, we consider preference-based diagnosis selection. We develop a general meta-reasoning technique, i.e., an MCS transformation capable of full introspection on possible diagnoses, and we present a natural encoding of preferred diagnosis selection on top. Moreover, for the more involved notions of diagnosis utilized, we establish that the complexity does not increase. However, this does not carry over to selecting most preferred diagnoses as the encoding is not polynomial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bikakis, A., Antoniou, G.: Distributed defeasible contextual reasoning in ambient computing. In: Aarts, E., Crowley, J.L., de Ruyter, B., Gerhäuser, H., Pflaum, A., Schmidt, J., Wichert, R. (eds.) AmI 2008. LNCS, vol. 5355, pp. 308–325. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Bikakis, A., Antoniou, G.: Defeasible contextual reasoning with arguments in ambient intelligence. IEEE Trans. Knowl. Data Eng. 22(11), 1492–1506 (2010)

    Article  Google Scholar 

  3. Bikakis, A., Antoniou, G., Hassapis, P.: Strategies for contextual reasoning with conflicts in ambient intelligence. Knowl. Inf. Syst. 27(1), 45–84 (2011)

    Article  Google Scholar 

  4. Brewka, G., Eiter, T.: Equilibria in Heterogeneous Nonmonotonic Multi-Context Systems. In: Proc. 22nd Conf. Artificial Intelligence (AAAI 2007), pp. 385–390. AAAI Press (2007)

    Google Scholar 

  5. Brewka, G., Eiter, T., Fink, M., Weinzierl, A.: Managed multi-context systems. In: Walsh, T. (ed.) Proc. 22nd International Joint Conf. Artificial Intelligence (IJCAI 2011), pp. 786–791. AAAI Press/IJCAI (2011)

    Google Scholar 

  6. Brewka, G., Roelofsen, F., Serafini, L.: Contextual Default Reasoning. In: Veloso, M. (ed.) Proc. 20th International Joint Conf. Artificial Intelligence (IJCAI 2007), pp. 268–273. AAAI Press/IJCAI (2007)

    Google Scholar 

  7. Eiter, T., Fink, M., Schüller, P., Weinzierl, A.: Finding explanations of inconsistency in multi-context systems. Artif. Intell. 216, 233–274 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eiter, T., Fink, M., Weinzierl, A.: Preference-based inconsistency assessment in multi-context systems. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 143–155. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: Semantics and complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 200–212. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Giunchiglia, F.: Contextual reasoning. Epistemologia XVI, 345–364 (1993)

    Google Scholar 

  11. McCarthy, J.: Generality in artificial intelligence. Commun. ACM 30(12), 1029–1035 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Przymusinski, T.: Stable semantics for disjunctive programs. New Generation Computing 9(3), 401–424 (1991)

    Article  MATH  Google Scholar 

  13. Tasharrofi, S., Ternovska, E.: Generalized multi-context systems. In: Baral, C., Giacomo, G.D., Eiter, T. (eds.) Proc. 14th International Conf. Principles of Knowledge Representation and Reasoning (KR 2014), pp. 368–377 (2014)

    Google Scholar 

  14. Weinzierl, A.: Inconsistency Management under Preferences for Multi-Context Systems and Extensions. PhD thesis, TU Vienna, A-1040 Vienna, Karlsplatz 13, Austria (October 2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Eiter, T., Fink, M., Weinzierl, A. (2015). Preference-Based Diagnosis Selection in Multi-Context Systems. In: Eiter, T., Strass, H., Truszczyński, M., Woltran, S. (eds) Advances in Knowledge Representation, Logic Programming, and Abstract Argumentation. Lecture Notes in Computer Science(), vol 9060. Springer, Cham. https://doi.org/10.1007/978-3-319-14726-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14726-0_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14725-3

  • Online ISBN: 978-3-319-14726-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics