Variational Time-Implicit Multiphase Level-Sets | SpringerLink
Skip to main content

Variational Time-Implicit Multiphase Level-Sets

A Fast Convex Optimization-Based Solution

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2015)

Abstract

We propose a new principle, the variational region competition, to simultaneously propagate multiple disjoint level-sets in a fully time-implicit manner, minimizing the total cost w.r.t. region changes. We demonstrate, that the problem of multiphase level-set evolution can be reformulated in terms of a Potts problem, for which fast optimization algorithms are available using recent developments in convex relaxation. Further, we use an efficient recently proposed duality-based continuous max-flow method [1] implemented using massively parallel computing on GPUs for high computational performance. In contrast to conventional multi-phase level-set evolution approaches, ours allows for large time steps accelerating the evolution procedure. Further, the proposed method propagates all regions simultaneously, as opposed to the one-by-one phase movement of current time-implicit implementations. Promising experiment results demonstrate substantial improvements in a wide spectrum of practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yuan, J., Bae, E., Tai, X.-C., Boykov, Y.: A continuous max-flow approach to potts model. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 379–392. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Paragios, N., Chen, Y., Faugeras, O.: Handbook of Mathematical Models in Computer Vision. Springer-Verlag New York, Inc., Secaucus (2005)

    MATH  Google Scholar 

  3. Osher, S., Fedkiw, R.: Level set methods and dynamic implicit surfaces. Applied Mathematical Sciences, vol. 153. Springer, New York (2003)

    MATH  Google Scholar 

  4. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1988)

    Article  Google Scholar 

  5. Cremers, D., Rousson, M., Deriche, R.: A review of statistical approaches to level set segmentation: Integrating color, texture, motion and shape. International Journal of Computer Vision 72, 195–215 (2007), doi:10.1007/s11263-006-8711-1

    Article  Google Scholar 

  6. Mitiche, A., Ayed, I.B.: Variational and Level Set Methods in Image Segmentation (Springer Topics in Signal Processing), 2011th edn. Springer (2010)

    Google Scholar 

  7. Zhao, H.K., Chan, T., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. Journal of Computational Physics 127(1), 179–195 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Paragios, N., Deriche, R.: Coupled geodesic active regions for image segmentation: A level set approach. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 224–240. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Brox, T., Weickert, J.: Level set segmentation with multiple regions. IEEE Transactions on Image Processing 15(10), 3213–3218 (2006)

    Article  Google Scholar 

  10. Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the mumford and shah model. International Journal of Computer Vision 50, 271–293 (2002)

    Article  MATH  Google Scholar 

  11. Almgren, F., Taylor, J.E., Wang, L.: Curvature-driven flows: a variational approach. SIAM J. Control Optim. 31(2), 387–438 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Luckhaus, S., Sturzenhecker, T.: Implicit time discretization for the mean curvature flow equation. Calc. Var. Partial Differential Equations 3(2), 253–271 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Boykov, Y., Kolmogorov, V., Cremers, D., Delong, A.: An integral solution to surface evolution PDEs via geo-cuts. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 409–422. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Chambolle, A.: An algorithm for mean curvature motion. Interf. Free Bound. 6, 195–218 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Yuan, J., Ukwatta, E., Tai, X.C., Fenster, A., Schnoerr, C.: A fast global optimization-based approach to evolving contours with generic shape prior. Technical report CAM-12-38, UCLA (2012)

    Google Scholar 

  16. Yuan, J., Ukwatta, E., Qiu, W., Rajchl, M., Sun, Y., Tai, X.-C., Fenster, A.: Jointly segmenting prostate zones in 3D MRIs by globally optimized coupled level-sets. In: Heyden, A., Kahl, F., Olsson, C., Oskarsson, M., Tai, X.-C. (eds.) EMMCVPR 2013. LNCS, vol. 8081, pp. 12–25. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Chan, T.F., Esedoḡlu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  18. Yuan, J., Bae, E., Tai, X.: A study on continuous max-flow and min-cut approaches. In: CVPR 2010 (2010)

    Google Scholar 

  19. Pock, T., Chambolle, A., Bischof, H., Cremers, D.: A convex relaxation approach for computing minimal partitions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, Florida (2009)

    Google Scholar 

  20. Lellmann, J., Breitenreicher, D., Schnörr, C.: Fast and exact primal-dual iterations for variational problems in computer vision. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 494–505. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23 (2001)

    Google Scholar 

  22. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 359–374 (2001)

    Google Scholar 

  23. Bresson, X., Chan, T.F.: Active contours based on chambolle’s mean curvature motion. In: IEEE International Conference on Image Processing, ICIP 2007, September 16-October 19, vol. 1, pp. 33–36 (2007)

    Google Scholar 

  24. Lellmann, J., Kappes, J., Yuan, J., Becker, F., Schnörr, C.: Convex multi-class image labeling by simplex-constrained total variation. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 150–162. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  25. Lellmann, J., Lenzen, F., Schnörr, C.: Optimality bounds for a variational relaxation of the image partitioning problem. In: Boykov, Y., Kahl, F., Lempitsky, V., Schmidt, F.R. (eds.) EMMCVPR 2011. LNCS, vol. 6819, pp. 132–146. Springer, Heidelberg (2011)

    Google Scholar 

  26. Potts, R.B.: Some generalized order-disorder transformations. In: Proceedings of the Cambridge Philosophical Society, vol. 48, pp. 106–109 (1952)

    Google Scholar 

  27. Ayed, I.B., Mitiche, A., Belhadj, Z.: Multiregion level-set partitioning of synthetic aperture radar images. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(5), 793–800 (2005)

    Article  Google Scholar 

  28. Rajchl, M., Yuan, J., Ukwatta, E., Peters, T.: Fast interactive multi-region cardiac segmentation with linearly ordered labels. In: 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 1409–1412. IEEE Conference Publications (2012)

    Google Scholar 

  29. Rajchl, M., Yuan, J., White, J., Ukwatta, E., Stirrat, J., Nambakhsh, C., Li, F., Peters, T.: Interactive hierarchical max-flow segmentation of scar tissue from late-enhancement cardiac mr images. IEEE Transactions on Medical Imaging 33(1), 159–172 (2014)

    Article  Google Scholar 

  30. Baxter, J.S., Rajchl, M., Yuan, J., Peters, T.M.: A continuous max-flow approach to general hierarchical multi-labelling problems. arXiv preprint arXiv:1404.0336 (2014)

    Google Scholar 

  31. Baxter, J.S., Rajchl, M., Yuan, J., Peters, T.M.: A continuous max-flow approach to multi-labeling problems under arbitrary region regularization. arXiv preprint arXiv:1405.0892 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Rajchl, M. et al. (2015). Variational Time-Implicit Multiphase Level-Sets. In: Tai, XC., Bae, E., Chan, T.F., Lysaker, M. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2015. Lecture Notes in Computer Science, vol 8932. Springer, Cham. https://doi.org/10.1007/978-3-319-14612-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14612-6_21

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14611-9

  • Online ISBN: 978-3-319-14612-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics