Abstract
We propose a new principle, the variational region competition, to simultaneously propagate multiple disjoint level-sets in a fully time-implicit manner, minimizing the total cost w.r.t. region changes. We demonstrate, that the problem of multiphase level-set evolution can be reformulated in terms of a Potts problem, for which fast optimization algorithms are available using recent developments in convex relaxation. Further, we use an efficient recently proposed duality-based continuous max-flow method [1] implemented using massively parallel computing on GPUs for high computational performance. In contrast to conventional multi-phase level-set evolution approaches, ours allows for large time steps accelerating the evolution procedure. Further, the proposed method propagates all regions simultaneously, as opposed to the one-by-one phase movement of current time-implicit implementations. Promising experiment results demonstrate substantial improvements in a wide spectrum of practical applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Yuan, J., Bae, E., Tai, X.-C., Boykov, Y.: A continuous max-flow approach to potts model. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 379–392. Springer, Heidelberg (2010)
Paragios, N., Chen, Y., Faugeras, O.: Handbook of Mathematical Models in Computer Vision. Springer-Verlag New York, Inc., Secaucus (2005)
Osher, S., Fedkiw, R.: Level set methods and dynamic implicit surfaces. Applied Mathematical Sciences, vol. 153. Springer, New York (2003)
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1988)
Cremers, D., Rousson, M., Deriche, R.: A review of statistical approaches to level set segmentation: Integrating color, texture, motion and shape. International Journal of Computer Vision 72, 195–215 (2007), doi:10.1007/s11263-006-8711-1
Mitiche, A., Ayed, I.B.: Variational and Level Set Methods in Image Segmentation (Springer Topics in Signal Processing), 2011th edn. Springer (2010)
Zhao, H.K., Chan, T., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. Journal of Computational Physics 127(1), 179–195 (1996)
Paragios, N., Deriche, R.: Coupled geodesic active regions for image segmentation: A level set approach. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 224–240. Springer, Heidelberg (2000)
Brox, T., Weickert, J.: Level set segmentation with multiple regions. IEEE Transactions on Image Processing 15(10), 3213–3218 (2006)
Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the mumford and shah model. International Journal of Computer Vision 50, 271–293 (2002)
Almgren, F., Taylor, J.E., Wang, L.: Curvature-driven flows: a variational approach. SIAM J. Control Optim. 31(2), 387–438 (1993)
Luckhaus, S., Sturzenhecker, T.: Implicit time discretization for the mean curvature flow equation. Calc. Var. Partial Differential Equations 3(2), 253–271 (1995)
Boykov, Y., Kolmogorov, V., Cremers, D., Delong, A.: An integral solution to surface evolution PDEs via geo-cuts. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 409–422. Springer, Heidelberg (2006)
Chambolle, A.: An algorithm for mean curvature motion. Interf. Free Bound. 6, 195–218 (2004)
Yuan, J., Ukwatta, E., Tai, X.C., Fenster, A., Schnoerr, C.: A fast global optimization-based approach to evolving contours with generic shape prior. Technical report CAM-12-38, UCLA (2012)
Yuan, J., Ukwatta, E., Qiu, W., Rajchl, M., Sun, Y., Tai, X.-C., Fenster, A.: Jointly segmenting prostate zones in 3D MRIs by globally optimized coupled level-sets. In: Heyden, A., Kahl, F., Olsson, C., Oskarsson, M., Tai, X.-C. (eds.) EMMCVPR 2013. LNCS, vol. 8081, pp. 12–25. Springer, Heidelberg (2013)
Chan, T.F., Esedoḡlu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006) (electronic)
Yuan, J., Bae, E., Tai, X.: A study on continuous max-flow and min-cut approaches. In: CVPR 2010 (2010)
Pock, T., Chambolle, A., Bischof, H., Cremers, D.: A convex relaxation approach for computing minimal partitions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, Florida (2009)
Lellmann, J., Breitenreicher, D., Schnörr, C.: Fast and exact primal-dual iterations for variational problems in computer vision. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 494–505. Springer, Heidelberg (2010)
Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23 (2001)
Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 359–374 (2001)
Bresson, X., Chan, T.F.: Active contours based on chambolle’s mean curvature motion. In: IEEE International Conference on Image Processing, ICIP 2007, September 16-October 19, vol. 1, pp. 33–36 (2007)
Lellmann, J., Kappes, J., Yuan, J., Becker, F., Schnörr, C.: Convex multi-class image labeling by simplex-constrained total variation. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 150–162. Springer, Heidelberg (2009)
Lellmann, J., Lenzen, F., Schnörr, C.: Optimality bounds for a variational relaxation of the image partitioning problem. In: Boykov, Y., Kahl, F., Lempitsky, V., Schmidt, F.R. (eds.) EMMCVPR 2011. LNCS, vol. 6819, pp. 132–146. Springer, Heidelberg (2011)
Potts, R.B.: Some generalized order-disorder transformations. In: Proceedings of the Cambridge Philosophical Society, vol. 48, pp. 106–109 (1952)
Ayed, I.B., Mitiche, A., Belhadj, Z.: Multiregion level-set partitioning of synthetic aperture radar images. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(5), 793–800 (2005)
Rajchl, M., Yuan, J., Ukwatta, E., Peters, T.: Fast interactive multi-region cardiac segmentation with linearly ordered labels. In: 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 1409–1412. IEEE Conference Publications (2012)
Rajchl, M., Yuan, J., White, J., Ukwatta, E., Stirrat, J., Nambakhsh, C., Li, F., Peters, T.: Interactive hierarchical max-flow segmentation of scar tissue from late-enhancement cardiac mr images. IEEE Transactions on Medical Imaging 33(1), 159–172 (2014)
Baxter, J.S., Rajchl, M., Yuan, J., Peters, T.M.: A continuous max-flow approach to general hierarchical multi-labelling problems. arXiv preprint arXiv:1404.0336 (2014)
Baxter, J.S., Rajchl, M., Yuan, J., Peters, T.M.: A continuous max-flow approach to multi-labeling problems under arbitrary region regularization. arXiv preprint arXiv:1405.0892 (2014)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Rajchl, M. et al. (2015). Variational Time-Implicit Multiphase Level-Sets. In: Tai, XC., Bae, E., Chan, T.F., Lysaker, M. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2015. Lecture Notes in Computer Science, vol 8932. Springer, Cham. https://doi.org/10.1007/978-3-319-14612-6_21
Download citation
DOI: https://doi.org/10.1007/978-3-319-14612-6_21
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-14611-9
Online ISBN: 978-3-319-14612-6
eBook Packages: Computer ScienceComputer Science (R0)