Fast Multiatlas Selection Using Composition of Transformations for Radiation Therapy Planning | SpringerLink
Skip to main content

Fast Multiatlas Selection Using Composition of Transformations for Radiation Therapy Planning

  • Conference paper
  • First Online:
Medical Computer Vision: Algorithms for Big Data (MCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8848))

Included in the following conference series:

Abstract

In radiation therapy, multiatlas segmentation is recognized as being accurate, but is generally not considered scalable since the highest accuracy is achieved only when using a large atlas database. The fundamental problem is to use such a large database, to accurately represent the population variability, while conserving a relatively small computational cost. A method based on the composition of transformations is proposed to address this issue. The main novelties and key contributions of this paper are the definition of a transitivity error function and the presentation of an image clustering scheme that is based solely on the computed registration transformations. Leave-one-out experiments conducted on a database of \(N=50\) MR prostate scans demonstrate that a reduction of \((N-1)=49\)x in the number of pre-alignment registrations, and of 3.2x in term of total registration effort, is possible without significant impact on segmentation quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5491
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 6864
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acosta, O., Dowling, J., Drean, G., Simon, A., Crevoisier, R.D., Haigron, P.: Multi-atlas-based segmentation of pelvic structures from CT scans for planning in prostate cancer radiotherapy. In: El-Baz, A.S., Saba, L., Suri, J. (eds.) Abdomen and Thoracic Imaging, pp. 623–656. Springer, New york (2014)

    Chapter  Google Scholar 

  2. Aljabar, P., Heckemann, R.A., Hammers, A., Hajnal, J.V., Rueckert, D.: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. NeuroImage 46(3), 726–738 (2009)

    Article  Google Scholar 

  3. Blezek, D.J., Miller, J.V.: Atlas stratification. Med. Image Anal. 11(5), 443–457 (2007)

    Article  Google Scholar 

  4. Boisvert, J., Cheriet, F., Pennec, X., Labelle, H., Ayache, N.: Geometric variability of the scoliotic spine using statistics on articulated shape models. IEEE Trans. Med. Imaging 27(4), 557–568 (2008)

    Article  Google Scholar 

  5. Chandra, S.S., Dowling, J.A., Shen, K.K., Raniga, P., Pluim, J.P.W., Greer, P.B., Salvado, O., Fripp, J.: Patient specific prostate segmentation in 3-D magnetic resonance images. IEEE Trans. Med. Imaging 31(10), 1955–1964 (2012)

    Article  Google Scholar 

  6. Commowick, O., Warfield, S.K., Malandain, G.: Using frankenstein’s creature paradigm to build a patient specific atlas. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part II. LNCS, vol. 5762, pp. 993–1000. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Depa, M., Holmvang, G., Schmidt, E.J., Golland, P., Sabuncu, M.R.: Towards efficient label fusion by pre-alignment of training data. In: Proceedings of the 2011 MICCAI Workshop on Multi-Atlas Labeling and Statistical Fusion, pp. 38–46 (2011)

    Google Scholar 

  8. Dowling, J., Lambert, J., Parker, J., Salvado, O., Fripp, J., Capp, A., Wratten, C., Denham, J.W., Greer, P.B.: An atlas-based electron density mapping method for magnetic resonance imaging MRI-alone Treatment Planning and Adaptive MRI-based prostate radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 83(1), e5–e11 (2012)

    Article  Google Scholar 

  9. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315(5814), 972–976 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hoang Duc, A.K., Modat, M., Leung, K.K., Cardoso, M.J., Barnes, J., Kadir, T., Ourselin, S.: Using manifold learning for atlas selection in multi-atlas segmentation. PloS One 8(8), e70059 (2013)

    Article  Google Scholar 

  11. Isgum, I., Staring, M., Rutten, A., Prokop, M., Viergever, M.A., van Ginneken, B.: Multi-atlas-based segmentation with local decision fusion-application to cardiac and aortic segmentation in CT scans. IEEE TMI 28(7), 1000–1010 (2009)

    Google Scholar 

  12. Klein, S., van der Heide, U.A., Lips, I.M., van Vulpen, M., Staring, M., Pluim, J.P.W.: Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information. Med. Phys. 35(4), 1407 (2008)

    Article  Google Scholar 

  13. Langerak, T.R., Berendsen, F.F., van der Heide, U.A., Kotte, A.N.T.J., Pluim, J.P.W.: Multiatlas-based segmentation with preregistration atlas selection. Med. Phys. 40(9), 091701 (2013)

    Article  Google Scholar 

  14. Leung, K.K., Barnes, J., Ridgway, G.R., Bartlett, J.W., Clarkson, M.J., Macdonald, K., Schuff, N., Fox, N.C., Ourselin, S.: Automated cross-sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and Alzheimer’s disease. NeuroImage 51(4), 1345–1359 (2010)

    Article  Google Scholar 

  15. Lötjönen, J.M., Wolz, R., Koikkalainen, J.R., Thurfjell, L., Waldemar, G., Soininen, H., Rueckert, D.: Fast and robust multi-atlas segmentation of brain magnetic resonance images. NeuroImage 49(3), 2352–2365 (2010)

    Article  Google Scholar 

  16. van Rikxoort, E.M., Isgum, I., Arzhaeva, Y., Staring, M., Klein, S., Viergever, M.A., Pluim, J.P.W., van Ginneken, B.: Adaptive local multi-atlas segmentation: application to the heart and the caudate nucleus. Med. Image Anal. 14(1), 39–49 (2010)

    Article  Google Scholar 

  17. Rivest-Hénault, D., Dowson, N., Greer, P., Dowling, J.: Inverse-consistent rigid registration of CT and MR for MR-based planning and adaptive prostate radiation therapy. J. Phys: Conf. Ser. 489, 012039 (2014)

    Google Scholar 

  18. Rohlfing, T., Brandt, R., Menzel, R., Maurer, C.R.: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. NeuroImage 21(4), 1428–1442 (2004)

    Article  Google Scholar 

  19. Skrinjar, O., Bistoquet, A., Tagare, H.: Symmetric and transitive registration of image sequences. Int. J. Biomed. Imaging 2008, 686875 (2008)

    Article  Google Scholar 

  20. Wolz, R., Aljabar, P., Hajnal, J.V., Hammers, A., Rueckert, D.: LEAP: learning embeddings for atlas propagation. NeuroImage 49(2), 1316–1325 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Cancer Council NSW (RG 11-05), the Prostate Cancer Foundation of Australia (YI2011), Movember and Cure Cancer Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Rivest-Hénault .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Rivest-Hénault, D., Ghose, S., Pluim, J.P.W., Greer, P.B., Fripp, J., Dowling, J.A. (2014). Fast Multiatlas Selection Using Composition of Transformations for Radiation Therapy Planning. In: Menze, B., et al. Medical Computer Vision: Algorithms for Big Data. MCV 2014. Lecture Notes in Computer Science(), vol 8848. Springer, Cham. https://doi.org/10.1007/978-3-319-13972-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13972-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13971-5

  • Online ISBN: 978-3-319-13972-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics