Visual Browsing of Large Image Databases | SpringerLink
Skip to main content

Visual Browsing of Large Image Databases

  • Conference paper
Advanced Machine Learning Technologies and Applications (AMLTA 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 488))

Abstract

The amount of user-generated and -contributed data, online and offline, is growing at a rapid rate. This is particularly true for visual information in form of images. On the other hand, efficient and effective tools for managing these growing repositories are relatively scarce. In this paper, we present approaches that, rather than being directly retrieval-based, allow visual interactive exploration of large image collections. We introduce the underlying methods that are being employed to effectively visualise image databases as well as the browsing operations that enable interaction. We then present the Hue Sphere Image Browser, an efficient and intuitive hierarchical image browser, including its recent ports to large multi-touch screens and to mobile devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahlstroem, D., Schoeffmann, K., Hudelist, M., Schaefer, G.: A user study on image browsing on small screens. In: 20th ACM Int. Conference on Multimedia (2012)

    Google Scholar 

  2. Bartolini, I., Ciaccia, P., Patella, M.: Adaptively browsing image databases with PIBE. Multimedia Tools and Applications 31(3), 269–286 (2006)

    Article  Google Scholar 

  3. Chen, C.: Information Visualization, 2nd edn. Springer (2004)

    Google Scholar 

  4. Chen, C., Gagaudakis, G., Rosin, P.: Similarity-based image browsing. In: Int. Conference on Intelligent Information Processing, pp. 206–213 (2000)

    Google Scholar 

  5. Chen, J.Y., Bouman, C.A., Dalton, J.C.: Hierarchical browsing and search of large image databases. IEEE Trans. Image Processing 9(3), 442–455 (2000)

    Article  Google Scholar 

  6. Chen, Y.-X., Butz, A.: PhotoSim: Tightly integrating image analysis into a photo browsing UI. In: Butz, A., Fisher, B., Krüger, A., Olivier, P., Christie, M. (eds.) SG 2008. LNCS, vol. 5166, pp. 224–231. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: Ideas, influences, and trends of the new age. ACM Computing Surveys 40(2), 1–60 (2008)

    Article  Google Scholar 

  8. Dontcheva, M., Agrawala, M., Cohen, M.: Metadata visualization for image browsing. In: 18th Annual ACM Symposium on User Interface Software and Technology (2005)

    Google Scholar 

  9. Gomi, A., Miyazaki, R., Itoh, T., Li, J.: CAT: A hierarchical image browser using a rectangle packing technique. In: 12th Int. Conference on Information Visualization, pp. 82–87 (2008)

    Google Scholar 

  10. Heesch, D.: A survey of browsing models for content based image retrieval. Multimedia Tools and Applications 40(2), 261–284 (2008)

    Article  Google Scholar 

  11. Heesch, D., Rüger, S.: NNk networks for content-based image retrieval. In: European Conference on Information Retrieval, pp. 253–266 (2004)

    Google Scholar 

  12. Keller, I., Meiers, T., Ellerbrock, T., Sikora, T.: Image browsing with PCA-assisted user-interaction. In: IEEE Workshop on Content-Based Access of Image and Video Libraries, pp. 102–108 (2001)

    Google Scholar 

  13. Krischnamachari, S., Abdel-Mottaleb, M.: Image browsing using hierarchical clustering. In: IEEE Symposium on Computers and Communications, pp. 301–307 (1999)

    Google Scholar 

  14. Kruskal, J.B., Wish, M.: Multidimensional scaling. Sage Publications (1978)

    Google Scholar 

  15. Moghaddam, B., Tian, Q., Lesh, N., Shen, C., Huang, T.S.: Visualization and user-modeling for browsing personal photo libraries. Int. Journal of Computer Vision 56(1-2), 109–130 (2004)

    Article  Google Scholar 

  16. Moving Picture Experts Group: Description of core experiments for MPEG-7 color/texture descriptors. Tech. Rep. ISO/IEC JTC1/SC29/WG11/ N2929 (1999)

    Google Scholar 

  17. Nguyen, G.P., Worring, M.: Interactive access to large image collections using similarity-based visualization. Journal of Visual Languages and Computing 19(2), 203–224 (2008)

    Article  Google Scholar 

  18. Plant, W., Schaefer, G.: Navigation and browsing of image databases. In: Int. Conference on Soft Computing and Pattern Recognition, pp. 750–755 (2009)

    Google Scholar 

  19. Plant, W., Schaefer, G.: Visualising image databases. In: IEEE Int. Workshop on Multimedia Signal Processing, pp. 1–6 (2009)

    Google Scholar 

  20. Plant, W., Schaefer, G.: Visualisation and browsing of image databases. In: Lin, W., Tao, D., Kacprzyk, J., Li, Z., Izquierdo, E., Wang, H. (eds.) Multimedia Analysis, Processing and Communications. SCI, vol. 346, pp. 3–57. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. Platt, J., Czerwinski, M., Field, B.: PhotoTOC: automatic clustering for browsing personal photographs. Tech. rep., Microsoft Research (2002)

    Google Scholar 

  22. Rodden, K.: Evaluating Similarity-Based Visualisations as Interfaces for Image Browsing. Ph.D. thesis, University of Cambridge Computer Laboratory (2001)

    Google Scholar 

  23. Rodden, K., Basalaj, W., Sinclair, D., Wood, K.: Evaluating a visualisation of image similarity as a tool for image browsing. In: IEEE Symposium on Information Visualization, pp. 36–43 (1999)

    Google Scholar 

  24. Rodden, K., Basalaj, W., Sinclair, D., Wood, K.: A comparison of measures for visualising image similarity. In: The Challenge of Image Retrieval (2000)

    Google Scholar 

  25. Rubner, Y., Guibas, L., Tomasi, C.: The earth mover’s distance, multi-dimensional scaling, and color-based image retrieval. In: Image Understanding Workshop, pp. 661–668 (1997)

    Google Scholar 

  26. Sangwine, J., Horne, R.E.N.: The Colour Image Processing Handbook. Chapman & Hall (1998)

    Google Scholar 

  27. Schaefer, G.: A next generation browsing environment for large image repositories. Multimedia Tools and Applications 47(1), 105–120 (2010)

    Article  Google Scholar 

  28. Schaefer, G.: Content-based image retrieval: Advanced topics. In: Czachórski, T., Kozielski, S., Stańczyk, U. (eds.) Man-Machine Interactions 2. AISC, vol. 103, pp. 31–37. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  29. Schaefer, G.: Content-based image retrieval: Some basics. In: Czachórski, T., Kozielski, S., Stańczyk, U. (eds.) Man-Machine Interactions 2. AISC, vol. 103, pp. 21–29. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  30. Schaefer, G., Fox, M., Plant, W., Stuttard, M.: Exploring image databases at the tip of your fingers. Information 17(5), 1951–1960 (2014)

    Google Scholar 

  31. Schaefer, G., Ruszala, S.: Image database navigation: A globe-al approach. In: Bebis, G., Boyle, R., Koracin, D., Parvin, B. (eds.) ISVC 2005. LNCS, vol. 3804, pp. 279–286. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  32. Schaefer, G., Ruszala, S.: Hierarchical image database navigation on a hue sphere. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Nefian, A., Meenakshisundaram, G., Pascucci, V., Zara, J., Molineros, J., Theisel, H., Malzbender, T. (eds.) ISVC 2006. LNCS, vol. 4292, pp. 814–823. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  33. Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Analysis and Machine Intelligence 22(12), 1249–1380 (2000)

    Article  Google Scholar 

  34. Worring, M., de Rooij, O., van Rijn, T.: Browsing visual collections using graphs. In: Int. Workshop on Workshop on Multimedia Information Retrieval, pp. 307–312 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Schaefer, G. (2014). Visual Browsing of Large Image Databases. In: Hassanien, A.E., Tolba, M.F., Taher Azar, A. (eds) Advanced Machine Learning Technologies and Applications. AMLTA 2014. Communications in Computer and Information Science, vol 488. Springer, Cham. https://doi.org/10.1007/978-3-319-13461-1_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13461-1_49

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13460-4

  • Online ISBN: 978-3-319-13461-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics