The Joint Belief Function and Shapley Value for the Joint Cooperative Game | SpringerLink
Skip to main content

The Joint Belief Function and Shapley Value for the Joint Cooperative Game

  • Chapter
  • First Online:
Econometrics of Risk

Part of the book series: Studies in Computational Intelligence ((SCI,volume 583))

  • 2043 Accesses

Abstract

In this paper, the characterization of the joint distribution of random set vectors by the belief function is investigated and the joint game in terms of the characteristic function is given. The bivariate Shapley value of a joint cooperative game is obtained through both cores and games. Formulas for the Shapley value derived from two different methods are shown to be identical. For illustration of our main results, several examples are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Burger, E.: Introduction to the Theory of Games. Prentice-Hall, Englewood Cliffs (1963)

    MATH  Google Scholar 

  2. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 28, 325–339 (1967)

    Article  MathSciNet  Google Scholar 

  3. Fernandez, F.R., Miguel, A.H., Justo, P.: Core solutions in vector-valued games. J. Optim. Theory Appl. 112, 331–360 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Li, B., Wang, T.: Computational aspects of the coarsening at random model and the Shapley value. Inf. Sci. 16, 3260–3270 (2007)

    Article  Google Scholar 

  5. Nguyen, H.T.: An Introduction to Random Sets. CRC Press, Boca Raton (2006)

    Book  MATH  Google Scholar 

  6. Nguyen, H.T.: Lecture notes. In: Statistics with Copulas for Applied Research. Department of Economics, Chiang Mai University, Chiang Mai, Thailand (2013).

    Google Scholar 

  7. Nguyen, H.T.: Lecture notes. In: Economic Applications of Game Theory. Department of Economics, Chiang Mai University, Chiang Mai, Thailand (2014).

    Google Scholar 

  8. Nguyen, H.T., Wang, T.: Belief Functions and Random Sets. The IMA Volumes in Mathematics and Its Applications, pp. 243–255. Springer, New York (1997).

    Google Scholar 

  9. Roemer, J.: Games with vector-valued payoffs and their application to competition between organizations. Econ. Bull. 3, 1–13 (2005)

    Google Scholar 

  10. Schmelzer, B.: Characterizing joint distributions of random sets by multivariate capacities. Int. J. Approx. Reason. 53, 1228–1247 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Schmelzer, B.: Joint distributions of random sets and their relation to copulas. In: Modeling Dependence in Econometrics. Advances in Intelligent Systems and Computing, vol. 251 (2014) doi:10.1007/978-3-319-03395-2-10.

  12. Shapley, L.S.: A value for n-person games. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games. Annals of Mathematical Studies, vol. 28, pp. 307–317. Princeton University Press, Princeton (1953)

    Google Scholar 

  13. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, New Jersey (1976)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Hung T. Nguyen for introducing this interesting topic to us and anonymous referees for their helpful comments which led to the big improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tonghui Wang .

Editor information

Editors and Affiliations

Appendix

Appendix

Proof of Lemma 4.4

Note that the left hand side of (18) is equal to

$$\begin{aligned} \phi _{ij}(\nu )&= \sum \limits _{A\subseteq E_1}\sum \limits _{B\subseteq E_2}c_{_{A,B}}\phi _{ij}(\omega _{A,B}) =\sum \limits _{A\ni i}\sum \limits _{B \ni j}\frac{c_{_{A,B}}}{|A||B|}\nonumber \\&= \sum \limits _{A\ni i}\sum \limits _{B \ni j}\frac{1}{|A||B|}\sum \limits _{C\subseteq A}\sum \limits _{D\subseteq B}(-1)^{|A{\setminus } C|+|B{\setminus } D|}\nu (C,D)\\&= \alpha _1-\alpha _2-\alpha _3+\alpha _4,\nonumber \end{aligned}$$
(19)

where

$$\begin{aligned} \alpha _1&= \sum \limits _{C\ni i}\sum \limits _{D\ni j}\left[ \sum \limits _{C\subseteq A}\sum \limits _{D\subseteq B}(-1)^{|A{\setminus } C|+|B{\setminus } D|}\frac{1}{|A||B|}\right] \nu (C,D)\\&= \sum \limits _{C\ni i}\sum \limits _{D\ni j}\left[ \sum \limits _{s=|C|}^{n_1}\sum \limits _{t=|D|}^{n_2}(-1)^{(s-|C|)+(t-|D|)} \frac{1}{st}\left( \begin{array}{c} n_1-|C|\\ s-|C|\\ \end{array} \right) \left( \begin{array}{c} n_2-|D|\\ t-|D|\\ \end{array} \right) \right] \nu (C,D), \end{aligned}$$
$$\begin{aligned} \alpha _2&= \sum \limits _{C\ni i}\sum \limits _{D\not \ni j}\left[ \sum \limits _{C\subseteq A}\sum \limits _{D\cup \{j\}\subseteq B}(-1)^{|A{\setminus } C|+|B{\setminus } D|}\frac{1}{|A||B|}\right] \nu (C,D)\\&= \sum \limits _{C\ni i}\sum \limits _{D\not \ni j}\left[ \sum \limits _{s=|C|}^{n_1}\sum \limits _{t=|D|+1}^{n_2}(-1)^{(s-|C|)+(t-|D|)} \frac{1}{st}\left( \begin{array}{c} n_1-|C|\\ s-|C|\\ \end{array} \right) \left( \begin{array}{c} n_2-|D|-1\\ t-|D|-1\\ \end{array} \right) \right] \\&\nu (C,D), \end{aligned}$$
$$\begin{aligned} \alpha _3&= \sum \limits _{C\not \ni i}\sum \limits _{D\ni j}\left[ \sum \limits _{C\cup \{i\}\subseteq A}\sum \limits _{D\subseteq B}(-1)^{|A{\setminus } C|+|B{\setminus } D|}\frac{1}{|A||B|}\right] \nu (C,D)\\&= \sum \limits _{C\not \ni i}\sum \limits _{D\ni j}\left[ \sum \limits _{s=|C|+1}^{n_1}\sum \limits _{t=|D|}^{n_2}(-1)^{(s-|C|)+(t-|D|)} \frac{1}{st}\left( \begin{array}{c} n_1-|C|-1\\ s-|C|-1\\ \end{array} \right) \left( \begin{array}{c} n_2-|D|\\ t-|D|\\ \end{array} \right) \right] \\&\nu (C,D), \end{aligned}$$

and

$$\begin{aligned} \alpha _4&= \sum \limits _{C\not \ni i}\sum \limits _{D\not \ni j}\left[ \sum \limits _{C\cup \{i\}\subseteq A}\sum \limits _{D\cup \{j\}\subseteq B}(-1)^{|A{\setminus } C|+|B{\setminus } D|}\frac{1}{|A||B|}\right] \nu (C,D)\\&= \sum \limits _{C\not \ni i}\sum \limits _{D\not \ni j}\left[ \sum \limits _{s=|C|+1}^{n_1}\sum \limits _{t=|D|+1}^{n_2}(-1)^{(s-|C|)+(t-|D|)}\right. \\&\left. \qquad \qquad \quad \cdot \frac{1}{st}\left( \begin{array}{c} n_1-|C|-1\\ s-|C|-1\\ \end{array} \right) \left( \begin{array}{c} n_2-|D|-1\\ t-|D|-1\\ \end{array} \right) \right] \nu (C,D). \end{aligned}$$

Now by using the following equality,

$$\begin{aligned} \sum \limits _{s=c}^{n}\frac{1}{s}(-1)^{s-c}\left( \begin{array}{c} n-c\\ s-c\\ \end{array} \right) =\frac{(n-c)!(c-1)!}{n!}, \end{aligned}$$

\(\alpha _i\)’s can be reduced so that the \(\phi _{ij}(\nu )\) is

$$\begin{aligned} \phi _{ij}(\nu )&= \sum \limits _{C\ni i}\sum \limits _{D\ni j}\left[ \frac{(n_1-|C|)!(|C|-1)!}{n_1 !}\frac{(n_2-|D|)!(|D|-1)!}{n_2 !}\right] \nu (C,D)\\&\quad -\,\sum \limits _{C\ni i}\sum \limits _{D\not \ni j}\left[ \frac{(n_1-|C|)!(|C|-1)!}{n_1 !}\frac{(n_2-|D|-1)!|D|!}{n_2 !}\right] \nu (C,D)\\&\quad -\,\sum \limits _{C\not \ni i}\sum \limits _{D\ni j}\left[ \frac{(n_1-|C|-1)!|C|!}{n_1 !}\frac{(n_2-|D|)!(|D|-1)!}{n_2 !}\right] \nu (C,D)\\&\quad +\,\sum \limits _{C\not \ni i}\sum \limits _{D\not \ni j}\left[ \frac{(n_1-|C|-1)!|C|!}{n_1 !}\frac{(n_2-|D|-1)!|D|!}{n_2 !}\right] \nu (C,D). \end{aligned}$$

Therefore, the bivariate Shapley value formula is given, after simplification, by

$$\begin{aligned} \phi _{ij}(\nu )&= \sum \limits _{C\ni i}\sum \limits _{D\ni j}\left[ \frac{(n_1-|C|)!(|C|-1)!}{n_1 !}\frac{(n_2-|D|)!(|D|-1)!}{n_2 !}\right] \nonumber \\&\quad \times \,\left[ \nu (C,D)-\nu (C,D{\setminus }\{j\})-\nu (C{\setminus }\{i\},D)+\nu (C{\setminus }\{i\},D{\setminus }\{j\})\right] . \end{aligned}$$
(20)

Note that Shavley value given in (20) is equivalent to the one given by the cores of the joint belief function \(H\), in (17).    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wei, Z., Wang, T., Li, B., Nguyen, P.A. (2015). The Joint Belief Function and Shapley Value for the Joint Cooperative Game. In: Huynh, VN., Kreinovich, V., Sriboonchitta, S., Suriya, K. (eds) Econometrics of Risk. Studies in Computational Intelligence, vol 583. Springer, Cham. https://doi.org/10.1007/978-3-319-13449-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13449-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13448-2

  • Online ISBN: 978-3-319-13449-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics