A Metaontology for Annotating Ontology Entities with Vagueness Descriptions | SpringerLink
Skip to main content

A Metaontology for Annotating Ontology Entities with Vagueness Descriptions

  • Conference paper
  • First Online:
Uncertainty Reasoning for the Semantic Web III (URSW 2012, URSW 2011, URSW 2013)

Abstract

The emergence in the last years of initiatives like the Linked Open Data (LOD) has led to a significant increase in the amount of structured semantic data on the Web. Central role to this development has been played by ontologies, as these enable the representation of real world domains in an explicit and formal way and, thus, the production of commonly understood and shareable semantic data. Nevertheless, the shareability and wider reuse of such data can be hampered by the existence of vagueness within it, as this makes the data’s meaning less explicit. With that in mind, in this paper we present and evaluate the Vagueness Ontology, a metaontology that enables the explicit identification and description of vague entities and their vagueness-related characteristics in ontologies. The rationale is that such descriptions, when accompanying vague ontologies, may narrow the possible interpretations that the latter’s vague elements may assume by its users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Available at http://linkedmdb.org.

  2. 2.

    Available at http://dbpedia.org.

  3. 3.

    Available at http://www.cyc.com/platform/opencyc.

  4. 4.

    Available at http://www.ip-super.org.

  5. 5.

    Available at http://lov.okfn.org/vocab/voaf/v2.1/index.html.

  6. 6.

    Available at http://www.essepuntato.it/2013/10/vagueness.

  7. 7.

    Available at http://www.essepuntato.it/samod.

  8. 8.

    Available at http://www.essepuntato.it/2013/10/vagueness/documentation.

  9. 9.

    Available at http://www.ontologydesignpatterns.org/cp/owl/situation.owl.

  10. 10.

    All the entities of the Vagueness Ontology are introduced in Manchester Syntax [15], while the examples of use of the ontology are presented in Turtle [27].

  11. 11.

    Available at http://oeg-lia3.dia.fi.upm.es/oops/index-content.jsp.

  12. 12.

    Available at http://esurv.org?u=vagueness-ontology.

  13. 13.

    Available at http://www.essepuntato.it/2013/10/vagueness/evaluation.

  14. 14.

    Even if confidence intervals of the SUS scores will be rather wide (e.g., in our experiment we obtained [56.06, 78.45]), the average SUS score will be surprisingly stable even with a small sample. As stated in [29] and summarised in his blog (see http://www.measuringusability.com/blog/10-things-SUS.php for more details), Sauro “did several computer simulations and showed that [...] the mean from a sample size of just 5 repeated 1000 times [...] was within 6 points of the true SUS score” in the 50 % of the 1000 samples used – note that the true SUS score was calculated using the original big sample Sauro had available. This means that “you get within the ballpark of the actual SUS score in more than half of the cases with very small sample sizes” – e.g., “if the actual SUS score was a 74, average SUS scores from five users will fall between 68 and 80 half of the time”.

References

  1. Alexopoulos, P., Pavlopoulos, J.: A vague sense classifier for detecting vague definitions in ontologies. In: Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics: Short Papers, Gothenburg, Sweden, April 2014, vol. 2, pp. 33–37. Association for Computational Linguistics (2014)

    Google Scholar 

  2. Alexopoulos, P., Villazon-Terrazas, B., Pan, J.: Towards vagueness-aware semantic data. In: Bobillo, F., Carvalho, R.N., da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Martin, T., Nickles, M., Pool, M. (eds.) URSW, CEUR Workshop Proceedings, vol. 1073, pp. 40–45. CEUR-WS.org (2013)

    Google Scholar 

  3. Bao, J., Tao, J., McGuinness, D.L., Smart, P.: Context representation for the semantic web. In: Web Science Conference, 26–27 April 2010 (2010)

    Google Scholar 

  4. Barabucci, G., Di Iorio, A., Peroni, S., Poggi, F., Vitali, F.: Annotations with EARMARK in practice: a fairy tale. In: Tomasi, F., Vitali, F., (eds.) Proceedings of the 2013 Workshop on Collaborative Annotations in Shared Environments: Metadata, Vocabularies and Techniques in the Digital Humanities (DH-CASE 2013). ACM Press (2013)

    Google Scholar 

  5. Benerecetti, M., Bouquet, P., Ghidini, C.: Contextual reasoning distilled. J. Exp. Theoret. Artif. Intell. 12(3), 279–305 (2000)

    Article  MATH  Google Scholar 

  6. Bobillo, F., Straccia, U.: Fuzzy ontology representation using OWL 2. Int. J. Approximate Reasoning 52(7), 1073–1094 (2011)

    Article  MathSciNet  Google Scholar 

  7. Brooke, J.: SUS: a quick and dirty usability scale. In: Jordan, P.W., Thomas, B., Weerdmeester, B.A., McClelland, A.L. (eds.) Usability Evaluation in Industry, pp. 189–194. Taylor and Francis, London (1996)

    Google Scholar 

  8. Buitelaar, P., Sintek, M., Kiesel, M.: A multilingual/multimedia lexicon model for ontologies. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 502–513. Springer, Heidelberg (2006)

    Google Scholar 

  9. Casellas, N.: Ontology evaluation through usability measures. In: Meersman, R., Herrero, P., Dillon, T. (eds.) OTM 2009 Workshops. LNCS, vol. 5872, pp. 594–603. Springer, Heidelberg (2009)

    Google Scholar 

  10. Chandrasekaran, B., Josephson, J., Benjamins, R.: What are ontologies and why do we need them? IEEE Intell. Syst. 14(1), 20–26 (1999)

    Article  Google Scholar 

  11. Falco, R., Gangemi, A., Peroni, S., Vitali, F.: Modeling OWL ontologies with Graffoo. In: Presutti, V., Blomqvist, E., Troncy, R., Sack, H., Papadakis, I., Tordai, A. (eds.) ESWC 2014 Satellite Events. LNCS, vol. 8798, pp. 320–325. Springer, Berlin (2014)

    Google Scholar 

  12. Gangemi, A., Lehmann, J., Presutti, V., Nissim, M., Catenacci, C.: C-ODO: an OWL meta-model for collaborative ontology design. In: Alani, H., Noy, N., Stumme, G., Mika, P., Sure, Y., Vrandecic, D. (eds.) Workshop on Social and Collaborative Construction of Structured Knowledge (CKC 2007) at WWW 2007, Banff, Canada (2007)

    Google Scholar 

  13. Hartmann, J., Sure, Y., Haase, P., Palma, R., del Carmen Suárez-Figueroa, M.: OMV - Ontology Metadata Vocabulary. In: Welty, C. (ed.) Ontology Patterns for the Semantic Web Workshop, Galway, Ireland (2005)

    Google Scholar 

  14. Hellmann, S., Lehmann, J., Auer, S., Brümmer, M.: Integrating NLP using linked data. In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC 2013, Part II. LNCS, vol. 8219, pp. 98–113. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Horridge, M., Patel-Schneider, P.F.: OWL 2 Web Ontology Language: Manchester Syntax. W3C working group note, World Wide Web Consortium, 2nd edn., December 2012

    Google Scholar 

  16. Hyde, D.: Vagueness, Logic and Ontology. Ashgate New Critical Thinking in Philosophy. Ashgate, Aldershot (2008)

    Google Scholar 

  17. Kahan, J., Koivunen, M.-R.: Annotea: an open RDF infrastructure for shared web annotations. In: Proceedings of the 10th International Conference on World Wide Web (WWW 2001), pp. 623–632. ACM Press, New York (2001)

    Google Scholar 

  18. Kotis, K., Vouros, A.: Human-centered ontology engineering: the HCOME methodology. Knowl. Inf. Syst. 10(1), 109–131 (2006)

    Article  Google Scholar 

  19. Lebo, T., Sahoo, S., McGuinness, D.: PROV-O: The PROV Ontology. W3C recommendation, World Wide Web Consortium, April 2013

    Google Scholar 

  20. Lewis, J.R., Sauro, J.: The factor structure of the system usability scale. In: Kurosu, M. (ed.) HCD 2009. LNCS, vol. 5619, pp. 94–103. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description logics for the semantic web. J. Web Semant. 6(4), 291–308 (2008)

    Article  Google Scholar 

  22. Montiel-Ponsoda, E., de Cea, G.A., Suarez-Figueroa, M., Palma, R., Peters, W., Gomez-Perez, A.: LexOMV: an OMV extension to capture multilinguality. In: Proceedings of the OntoLex07, pp. 118–127 (2007–06)

    Google Scholar 

  23. Noy, N.F., Chugh, A., Liu, W., Musen, M.A.: A framework for ontology evolution in collaborative environments. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 544–558. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  24. Palma, R., Haase, P., Corcho, O., Gómez-Pérez, A.: Change representation for OWL 2 ontologies. In: Hoekstra, R., Patel-Schneider, P.F. (eds.) OWLED, CEUR Workshop Proceedings, vol. 529. CEUR-WS.org (2008)

    Google Scholar 

  25. Pan, J.Z., Stamou, G., Stoilos, G., Taylor, S., Thomas, E.: Scalable querying services over Fuzzy ontologies. In: The Proceedings of the 17th International World Wide Web Conference (WWW2008) (2008)

    Google Scholar 

  26. Poveda-Villalón, M., Suárez-Figueroa, M.C., Gómez-Pérez, A.: Validating ontologies with OOPS!. In: ten Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012. LNCS, vol. 7603, pp. 267–281. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  27. Prud’hommeaux, E., Carothers, G.: Turtle - Terse RDF Triple Language. W3C candidate recommendation, World Wide Web Consortium, February 2013

    Google Scholar 

  28. Sanderson, R., Ciccarese, P., Van de Sompel, H.: Designing the W3C open annotation data model. In: Proceedings of the 5th Annual ACM Web Science Conference (WebSci13), pp. 366–375. ACM Press (2013)

    Google Scholar 

  29. Sauro, J.: A Practical Guide to the System Usability Scale: Background, Benchmarks & Best Practices. CreateSpace, Denver (2011)

    Google Scholar 

  30. Shapiro, S.: Vagueness in Context. Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  31. Stoilos, G., Stamou, G., Pan, J.Z., Tzouvaras, V., Horrocks, I.: Reasoning with very expressive Fuzzy description logics. J. Artif. Intell. Res. 30, 273–320 (2007)

    MATH  MathSciNet  Google Scholar 

  32. Strauss, A., Corbin, J.: Basics of Qualitative Research: Techniques and Procedures for Developing Grounded Theory, 2nd edn. Sage Publications, London (1998)

    Google Scholar 

  33. Thomas, C., Sheth, A.: On the expressiveness of the languages for the semantic web - making a case for a ‘little more’. In: Sanchez, E. (ed.) Fuzzy Logic and the Semantic Web. Capturing Intelligence, vol. 1, pp. 3–20. Elsevier, Amsterdam (2006)

    Chapter  Google Scholar 

  34. Vrandecic, D., Pinto, H.S., Sure, Y., Tempich, C.: The DILIGENT knowledge processes. J. Knowl. Manag. 9(5), 85–96 (2005)

    Article  Google Scholar 

  35. Zadeh, L.A.: From search engines to question-answering systems - the need for new tools. In: Ruiz, E.M., Segovia, J., Szczepaniak, P.S. (eds.) AWIC 2003. LNAI, vol. 2663, pp. 15–17. Springer, Heidelberg (2003)

    Google Scholar 

Download references

Acknowledgments

The research has been funded from the People Programme (Marie Curie Actions) of the European Union’s 7th Framework Programme P7/2007-2013 under REA grant agreement \(n^o\) 286348. We also want to thank all the people who helped us with the evaluation of Vagueness Ontology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panos Alexopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Alexopoulos, P., Peroni, S., Villazón-Terrazas, B., Pan, J.Z., Gómez-Pérez, J.M. (2014). A Metaontology for Annotating Ontology Entities with Vagueness Descriptions. In: Bobillo, F., et al. Uncertainty Reasoning for the Semantic Web III. URSW URSW URSW 2012 2011 2013. Lecture Notes in Computer Science(), vol 8816. Springer, Cham. https://doi.org/10.1007/978-3-319-13413-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13413-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13412-3

  • Online ISBN: 978-3-319-13413-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics