Metaheuristics for Solving a Hybrid Flexible Flowshop Problem with Sequence-Dependent Setup Times | SpringerLink
Skip to main content

Metaheuristics for Solving a Hybrid Flexible Flowshop Problem with Sequence-Dependent Setup Times

  • Conference paper
  • First Online:
Swarm Intelligence Based Optimization (ICSIBO 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8472))

Included in the following conference series:

  • 796 Accesses

Abstract

In this paper, we propose three new metaheuristic implementations to address the problem of minimizing the makespan in a hybrid flexible flowshop with sequence-dependent setup times. The first metaheuristic is a genetic algorithm (GA) embedding two new crossover operators, and the second is an ant colony optimization (ACO) algorithm which incorporates a transition rule featuring lookahead information and past information based on archive concepts such as the multiobjective evolutionary computation. The third metaheuristic is a hybridization (HGA) of the GA and the ACO algorithms. Numerical experiments were performed to compare the performance of the proposed algorithms on different benchmarks from the literature. The algorithms are compared with the best algorithms from the literature. The results indicate that our algorithms generate better solutions than those of the known reference sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5491
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 6864
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allahverdi, A., Ng, C., Cheng, T., Kovalyov, M.Y.: A survey of scheduling problems with setup times or costs. European Journal of Operational Research 187(3), 985–1032 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Allahverdi, A., Soroush, H.: The significance of reducing setup times/setup costs. European Journal of Operational Research 187(3), 978–984 (2008)

    Article  MATH  Google Scholar 

  3. Conner, G.: 10 questions. Manufacturing Engineering Magazine, pp. 93–99 (2009)

    Google Scholar 

  4. Dorigo, M.: Optimization, Learning and Natural Algorithms. Ph.D. thesis, Politecnico di Milano, Italy (1992)

    Google Scholar 

  5. Dorigo, M., Gambardella, L.: Ant colony system: A cooperative learning approach to the traveling salesman problem. In: IEEE Transactions on Evolutionary Computation (1997)

    Google Scholar 

  6. Dudek, R., Smith, M., Panwalkar, S.: Use of a case study in sequencing/scheduling research. Omega 2(2), 253–261 (1974)

    Article  Google Scholar 

  7. Gomez-Gasquet, P., Andres, C., Lario, F.: An agent-based genetic algorithm for hybrid flowshops with sequence dependent setup times to minimise makespan. Expert Systems with Applications 39(9), 8095–8107 (2012)

    Article  Google Scholar 

  8. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.G.H.R.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics 5, 287–326 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gupta, J.N.D.: Two-stage, hybrid flowshop scheduling problem. The Journal of Operational Research Society 39(4), 359–364 (1988)

    Article  MATH  Google Scholar 

  10. Holland, J.H.: Adaptation in natural and Artificial Systems. MIT Press, Cambridge, MA, USA (1992)

    Google Scholar 

  11. Jabbarizadeh, F., Zandieh, M., Talebi, D.: Hybrid flexible flowshops with sequence-dependent setup times and machine availability constraints. Comput. Ind. Eng. 57(3), 949–957 (2009)

    Article  Google Scholar 

  12. Javadian, N., Fattahi, P., Farahmand-Mehr, M., Amiri-Aref, M., Kazemi, M.: An immune algorithm for hybrid flow shop scheduling problem with time lags and sequence-dependent setup times. The International Journal of Advanced Manufacturing Technology 63, 337–348 (2012)

    Article  Google Scholar 

  13. Kurz, M.E., Askin, R.G.: Comparing scheduling rules for flexible flow lines. International Journal of Production Economics 85(3), 371–388 (2003)

    Article  Google Scholar 

  14. Kurz, M.E., Askn, R.G.: Scheduling flexible flow lines with sequence-dependent setup times. European Journal of Operational Research 159(1), 66–82 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Michalewicz, Z.: Genetic algorithms + data structures = evolution programs, 3rd edn. Springer-Verlag, London (1996)

    Book  MATH  Google Scholar 

  16. Mirsanei, H., Zandieh, M., Moayed, M., Khabbazi, M.: A simulated annealing algorithm approach to hybrid flow shop scheduling with sequence-dependent setup times. Journal of Intelligent Manufacturing 22, 965–978 (2011)

    Article  Google Scholar 

  17. Naderi, B., Ruiz, R., Zandieh, M.: Algorithms for a realistic variant of flowshop scheduling. Comput. Oper. Res. 37(2), 236–246 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Naderi, B., Zandieh, M., Roshanaei, V.: Scheduling hybrid flowshops with sequence dependent setup times to minimize makespan and maximum tardiness. The Internayional Journal of Advanced Manufacturing Technology 41, 1186–1198 (2009)

    Article  Google Scholar 

  19. Nawaz, M., Enscore, E.E., Ham, I.: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 11(1), 91–95 (1983)

    Article  Google Scholar 

  20. Puchinger, J., Raidl, G.R.: Combining metaheuristics and exact algorithms in combinatorial optimization: a survey and classification. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3562, pp. 41–53. Springer, Heidelberg (2005)

    Google Scholar 

  21. Ruiz, R., Maroto, C.: A genetic algorithm for hybrid flowshops with sequence dependent setup times and machine eligibility. European Journal of Operational Research 169(3), 781–800 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ruiz, R., Stützle, T.: An iterated greedy heuristic for the sequence dependent setup times flowshop problem with makespan and weighted tardiness objectives. European Journal of Operational Research 187(3), 1143–1159 (2008)

    Article  MATH  Google Scholar 

  23. Sioud, A., Gravel, M., Gagné, M.: A hybrid genetic algorithm for the single machine scheduling problem with sequence-dependent setup times. Computers & OR 39(10), 2415–2424 (2012)

    Article  MATH  Google Scholar 

  24. SPEC: Intel core 2 duo p8400 @ONLINE (2009). http://www.spec.org/cpu2006/results/res2010q1/cpu2006-20100118-09344.html

  25. SPEC: Intel core i7–2600 @ONLINE (2011). http://www.spec.org/cpu2006/results/res2011q3/cpu2006-20110718-17542.html

  26. Vignier, A., Billaut, J.C., Proust, C.: Les problemes d’ordonnancement de type flow-shop hybride : etat de l’art. RAIRO - Operations Research - Recherche Operationnelle 33(2), 117–183 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  27. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)

    Article  Google Scholar 

  28. Zandieh, M., Fatemi Ghomi, S., Moattar Husseini, S.: An immune algorithm approach to hybrid flow shops scheduling with sequence-dependent setup times. Applied Mathematics and Computation 180(1), 111–127 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  29. Zhu, X., Wilhelm, W.E.: Scheduling and lot sizing with sequence-dependent setup: A literature review. IIE Transactions 38(11), 987–1007 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aymen Sioud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Sioud, A., Gagné, C., Gravel, M. (2014). Metaheuristics for Solving a Hybrid Flexible Flowshop Problem with Sequence-Dependent Setup Times. In: Siarry, P., Idoumghar, L., Lepagnot, J. (eds) Swarm Intelligence Based Optimization. ICSIBO 2014. Lecture Notes in Computer Science(), vol 8472. Springer, Cham. https://doi.org/10.1007/978-3-319-12970-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12970-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12969-3

  • Online ISBN: 978-3-319-12970-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics