Matchings and Decision Trees for Determining Optimal Therapy | SpringerLink
Skip to main content

Matchings and Decision Trees for Determining Optimal Therapy

  • Conference paper
  • First Online:
Analysis of Images, Social Networks and Texts (AIST 2014)

Abstract

An approach to the study of different types of treatments in subgroups is proposed. This approach is based on matching algorithms and decision trees. An application to the data on children with acute lymphoblastic leukaemia is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Karachunskiy, A., Herold, R., von Stackelberg, A., et al.: Results of the first randomized multicenter trial on childhood acute lymphoblastic leukaemia in Russia. Leukemia 22, 1144–1153 (2008)

    Article  Google Scholar 

  2. Gale, D., Shapley, L.S.: College Admissions and the Stability of Marriage. Am. Math. Mon. 69(1), 9–15 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  3. Roth, A.E.: Differed acceptance algorithm: history, theory, practice, and open questions. Int. J. Game Theory 36(3–4), 537–569 (2007)

    Google Scholar 

  4. Alkan, A., Gale, D.: Stable schedule matching under revealed preference. J. Econ. Theory 112, 289–306 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fürnkranz, J.: Decision tree. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 263–267. Springer, New York (2010)

    Google Scholar 

  6. Rokach, L., Maimon, O.: Classification trees. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, 2nd edn, pp. 149–174. Springer, New York (2010)

    Google Scholar 

  7. NCI Dictionary of Cancer Terms. http://www.cancer.gov/dictionary?cdrid=655245. Accessed 7 March 2014

  8. Deza, M.M., Deza, E.: Encyclopedia of Distances, pp. 94, 323–324. Springer, Heidelberg (2009)

    Google Scholar 

  9. Shekhar, S., Xiong, H.: Distance measures. In: Encyclopedia of GIS, p. 245. Springer, New York (2008)

    Google Scholar 

  10. Fuhrt. B.: Distance and similarity measures. In: Encyclopedia of Multimedia, pp. 188–189. Springer, New York (2008)

    Google Scholar 

  11. Mirkin, B.G.: Core Concepts in Data Analysis: Summarization, Correlation, Visualization. Springer, London (2011)

    Book  Google Scholar 

  12. Raileanu, L.E., Stoffel, K.: Theoretical comparison between the Gini Index and Information Gain criteria. Ann. Math. Artif. Intell. 41, 77–93 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kotsiantis, S.B.: Decision trees: a recent overview. Artif. Intell. Rev. 39, 261–283 (2013)

    Article  Google Scholar 

  14. Kaplan, E.L., Meier, P.: Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53(282), 457–481 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  15. May, W.L.: Kaplan-Meier survival analysis. In: Schwab, M. (ed.) Encyclopedia of Cancer, pp. 1590–1593. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Kleinbaum, D.G., Klein, M.: Kaplan-Meier survival curves and the log-rank test. In: Kleinbaum, D.G., Klein, M. (eds.) Survival Analysis, pp. 55–96. Springer, New York (2012)

    Chapter  Google Scholar 

  17. Beyersmann, J., Schumacher, M., Allognol, A.: Nonparametric hypothesis testing. In: Competing Risks and Multistate Models with R, pp. 155–158. Springer, New York (2012)

    Google Scholar 

  18. Piaggio, G., Elbourne, D.R., Altman, D.G., Pocock, S.J., Evans, S.J.W., for the CONSORT Group: Reporting of noninferiority and equivalence randomized trials: extension of the CONSORT 2010 statement. JAMA 308(24), 2594–2604 (2012)

    Article  Google Scholar 

  19. Machin, D., Gardner, M.J.: Calculating confidence intervals for survival time analyses. Brit. Med. J. 296, 1369–1371 (1988)

    Article  Google Scholar 

  20. Goberg-Maitland, M., Frison, L., Halperin, J.L.: Active-control clinical trials to establish equivalence or noninferiority: methodological and statistical concepts linked to quality. Am. Heart J. 146(3), 398–403 (2003)

    Article  Google Scholar 

  21. Glanz, S.A.: Primer of Biostatistics, 7th edn. McGraw-Hill Education, New York (2011)

    Google Scholar 

  22. ICH Topic E9: Statistical Principles for Clinical Trials. Step 5. (2.1 Trial Context.), pp. 6–7 http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002928.pdf. Accessed 7 March 2014

  23. Ganter, B., Kuznetsov, S.O.: Hypotheses and version spaces. In: Ganter, B., de Moor, A., Lex, W. (eds.) ICCS 2003. LNCS (LNAI), vol. 2746. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  24. Blinova, V.G., Dobrynin, D.A., Finn, V.K., Kuznetsov, S.O., Pankratova, E.S.: Toxicology analysis by means of the JSM-method. Bioinformatics 19(10), 1201–1207 (2003)

    Article  Google Scholar 

  25. Ganter, B., Grigoriev, P.A., Kuznetsov, S.O., Samokhin, M.V.: Concept-based data mining with scaled labeled graphs. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 94–108. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Korepanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Korepanova, N., Kuznetsov, S.O., Karachunskiy, A.I. (2014). Matchings and Decision Trees for Determining Optimal Therapy. In: Ignatov, D., Khachay, M., Panchenko, A., Konstantinova, N., Yavorsky, R. (eds) Analysis of Images, Social Networks and Texts. AIST 2014. Communications in Computer and Information Science, vol 436. Springer, Cham. https://doi.org/10.1007/978-3-319-12580-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12580-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12579-4

  • Online ISBN: 978-3-319-12580-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics