Scaffolding of Ancient Contigs and Ancestral Reconstruction in a Phylogenetic Framework | SpringerLink
Skip to main content

Scaffolding of Ancient Contigs and Ancestral Reconstruction in a Phylogenetic Framework

  • Conference paper
Advances in Bioinformatics and Computational Biology (BSB 2014)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8826))

Included in the following conference series:

Abstract

Ancestral genome reconstruction is an important step in analyzing the evolution of genomes. Recent progress in sequencing ancient DNA led to the publication of so-called paleogenomes and allows the integration of this sequencing data in genome evolution analysis. However, the assembly of ancient genomes is fragmented because of DNA degradation over time. Integrated phylogenetic assembly addresses the issue of genome fragmentation in the ancient DNA assembly while improving the reconstruction of all ancient genomes in the phylogeny. The fragmented assembly of the ancient genome can be represented as an assembly graph, indicating contradicting ordering information of contigs.

In this setting, our approach is to compare the ancient data with extant finished genomes. We generalize a reconstruction approach minimizing the Single-Cut-or-Join rearrangement distance towards multifurcating trees and include edge lengths to avoid a sparse reconstruction in practice. When also including the additional conflicting ancient DNA data, we can still ensure consistent reconstructed genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 4576
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 5720
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bergeron, A., Blanchette, M., Chateau, A., Chauve, C.: Reconstructing ancestral gene orders using conserved intervals. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI), vol. 3240, pp. 14–25. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Bertrand, D., Gagnon, Y., Blanchette, M., El-Mabrouk, N.: Reconstruction of ancestral genome subject to whole genome duplication, speciation, rearrangement and loss. In: Moulton, V., Singh, M. (eds.) WABI 2010. LNCS (LNBI), vol. 6293, pp. 78–89. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Bos, K.I., Schuenemann, V.J., Golding, G.B., et al.: A draft genome of yersinia pestis from victims of the black death. Nature 478(7370), 506–510 (2011)

    Article  Google Scholar 

  4. Chauve, C., Tannier, E.: A methodological framework for the reconstruction of contiguous regions of ancestral genomes and its application to mammalian genomes. PLoS Computational Biology 4(11), e1000234 (2008)

    Google Scholar 

  5. Drancourt, M., Raoult, D.: Palaemicrobiology: current issues and perspectives. Nature Rev. Microbiol. 3, 23–35 (2005)

    Article  Google Scholar 

  6. Feijão, P., Meidanis, J.: SCJ: a breakpoint-like distance that simplifies several rearrangement problems. IEEE/ACM Trans. Comput. Biol. and Bioinf. 8(5), 1318–1329 (2011)

    Article  Google Scholar 

  7. Fitch, W.M.: Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Biology 20(4), 406–416 (1971)

    Article  Google Scholar 

  8. Hartigan, J.A.: Minimum mutation fits to a given tree. Biometrics, 53–65 (1973)

    Google Scholar 

  9. Ma, J., Zhang, L., Suh, B.B., et al.: Reconstructing contiguous regions of an ancestral genome. Genome Res. 16(12), 1557–1565 (2006)

    Article  Google Scholar 

  10. Maňuch, J., Patterson, M., Wittler, R., Chauve, C., Tannier, E.: Linearization of ancestral multichromosomal genomes. BMC Bioinformatics 13(19), S11 (2012)

    Google Scholar 

  11. Rajaraman, A., Tannier, E., Chauve, C.: FPSAC: fast phylogenetic scaffolding of ancient contigs. Bioinformatics 29(23), 2987–2994 (2013)

    Article  Google Scholar 

  12. Stoye, J., Wittler, R.: A unified approach for reconstructing ancient gene clusters. IEEE/ACM Trans. Comput. Biol. Bioinf. 6(3), 387–400 (2009)

    Article  Google Scholar 

  13. Zheng, C., Sankoff, D.: On the pathgroups approach to rapid small phylogeny. BMC Bioinformatics 12(S-1),  S4 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Luhmann, N., Chauve, C., Stoye, J., Wittler, R. (2014). Scaffolding of Ancient Contigs and Ancestral Reconstruction in a Phylogenetic Framework. In: Campos, S. (eds) Advances in Bioinformatics and Computational Biology. BSB 2014. Lecture Notes in Computer Science(), vol 8826. Springer, Cham. https://doi.org/10.1007/978-3-319-12418-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12418-6_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12417-9

  • Online ISBN: 978-3-319-12418-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics