Abstract
The aim of this paper is to evaluate the use of content and style features in automatic classification of intentions of Tweets. For this we propose different style features and evaluate them using a machine learning approach. We found that although the style features by themselves are useful for the identification of the intentions of tweets, it is better to combine such features with the content ones. We present a set of experiments, where we achieved a 9.46 % of improvement on the overall performance of the classification with the combination of content and style features as compared with the content features.
This work was done under partial support of the Mexican Government (CONACYT-134186, CONACYT grant #308719, SNI, COFAA-IPN, SIP-IPN 20144274) and FP7-PEOPLE-2010-IRSES: “Web Information Quality Evaluation Initiative (WIQ-EI)” European Commission project 269180.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wickre, K.: Celebrating #Twitter7. Twitter Blog (2013), https://blog.twitter.com/2013/celebrating-twitter7
Java, A., Song, X., Finin, T., Tseng, B.: Why we twitter: Understanding microblogging usage and communities. In: Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis. ACM (2007)
Agarwal, A., Xie, B., Vovsha, I., Rambow, O., Passonneau, R.: Sentiment analysis of Twitter data. In: Proceedings of the Workshop on Languages in Social Media. ACL, Stroudsburg (2011)
Pandey, V., Iyer, C.: Sentiment analysis of microblogs. Technical report (2009)
Jain, H., Mogadala, A., Varma, V.: Sielers : Feature analysis and polarity classification of expressions from Twitter and SMS data. In: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013). Second Joint Conference on Lexical and Computational Semantics (*SEM), vol. 2. ACL (2013)
Asur, S., Huberman, B.A.: Predicting the future with social media. In: Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, vol. 1. IEEE Computer Society (2010)
Diakopoulos, N.A., Shamma, D.A.: Characterizing debate performance via aggregated Twitter sentiment. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM (2010)
Alhadi, A.C., Staab, S., Gottron, T.: Exploring user purpose writing single tweets. In: WebSci 2011: Proceedings of the 3rd International Conference on Web Science. ACM (2011)
Website: Wikipedia, the free encyclopedia (2014), http://en.wikipedia.org/wiki/Intention
Martis, M., Alfaro, R.: Clasificación automática de la intención del usuario en mensajes de Twitter. In: I Workshop en Procesamiento Automatizado de Textos y Corpora, Sausalito, Viña del (March 2012)
Sriram, B., Fuhry, D., Demir, E., Ferhatosmanoglu, H., Demirbas, M.: Short text classification in Twitter to improve information filtering. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM (2010)
Stamatatos, E.: A survey of modern authorship attribution methods. J. Am. Soc. Inf. Sci. Technol. 60(3) (2009)
Rangel, F., Rosso, P.: Use of language and author profiling: Identification of gender and age. Natural Language Processing and Cognitive Science (2013)
Barbosa, L., Feng, J.: Robust sentiment detection on Twitter from biased and noisy data. In: Proceedings of the 23rd International Conference on Computational Linguistics: Posters. ACL, pp. 36–44 (2010)
Naaman, M., Boase, J., Lai, C.H.: Is it really about me?: Message content in social awareness streams. In: Proceedings of the 2010 ACM Conference on Computer Supported Cooperative Work. ACM (2010)
Banerjee, N., Chakraborty, D., Joshi, A., Mittal, S., Rai, A., Ravindran, B.: Towards analyzing micro-blogs for detection and classification of real-time intentions. In: Breslin, J.G., Ellison, N.B., Shanahan, J.G., Tufekci, Z., (eds.) Proceedings of International AAAI Conference on Weblogs and Social Media. The AAAI Press (2012)
Zhao, Y., Zobel, J.: Effective and Scalable Authorship Attribution Using Function Words. In: Lee, G.G., Yamada, A., Meng, H., Myaeng, S.-H. (eds.) AIRS 2005. LNCS, vol. 3689, pp. 174–189. Springer, Heidelberg (2005)
Sidorov, G., Velasquez, F., Stamatatos, E., Gelbukh, A., Chanona-Hernández, L.: Syntactic n-grams as machine learning features for natural language processing. Expert Syst. Appl. 41(3) (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Gómez-Adorno, H., Pinto, D., Montes, M., Sidorov, G., Alfaro, R. (2014). Content and Style Features for Automatic Detection of Users’ Intentions in Tweets. In: Bazzan, A., Pichara, K. (eds) Advances in Artificial Intelligence -- IBERAMIA 2014. IBERAMIA 2014. Lecture Notes in Computer Science(), vol 8864. Springer, Cham. https://doi.org/10.1007/978-3-319-12027-0_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-12027-0_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-12026-3
Online ISBN: 978-3-319-12027-0
eBook Packages: Computer ScienceComputer Science (R0)