Abstract
Data fusion is generally defined as the application of methods that combines data from multiple sources and collect that information in order to get conclusions. This paper analyzes the signalling cost of different data fusion filter models available in the literature with the new community model. The signalling cost of the Community Model has been mathematically formulated by incorporating the normalized signalling cost for each transmission. This process reduces the signalling burden on master fusion filter and improves throughput. A comparison of signalling cost of the existing data fusion models along with the new community model has also been presented in this paper. The results show that our community model incurs improvement with respect to the existing models in terms of signalling cost.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bhattacharya, B., Saha, B.: Community Model - A New Data Fusion Filter Paradigm sent in EAIT 2014 (2014)
Bhattacharya, B., Saha, B.: Community Model Architecture – A New Data Fusion Paradigm for Implementation. International Journal of Innovative Research in Computer and Commmucation Engineering 2(6), 4774–4783 (2014)
Bar-Shalom, Y., Fortmann, T.E.: Tracking and Data Association. Academic Press, San Diego (1988)
Bloch, I., Maître, H.: Fusion de données en traitement d’images: modèles d’information et décisions. Traitement du Signal 11(6), 435–446 (1994)
Blackman, S.S.: Multiple Targets Tracking with Radar Applications. Artech House Inc. (1986)
Hall, D.L., Llinas, J.: An Introduction to Multisensor Data Fusion. Proceedings of the IEEE 85(1), 6–23 (1997)
http://www.data-fusion.org/article.php (last accessed on May 29, 2014)
Luo, R.C., Kay, M.G.: Multisensor Integration and Fusion in Intelligent System. IEEE Trans. on System, Man and Cybernetics 19(5), 901–931 (1989)
Kokar, M., Kim, K.: Review of Multisensor Data Fusion: Architecture and Techniques. In: Proceedings of The International Symposium on Intelligent Control, Chicago, Illinois, USA, pp. 261–266 (August 1993)
Esteban, J., Starr, A., Willetts, R., Hannah, P., Bryanston-Cross, P.: A Review of Data Fusion Models and Paradigms: Towards Engineering Guidelines. Journal Neural Computing and Applications 14(4), 273–281 (2005)
Elmenreich, W.: A Review on System Architectures for Sensor Fusion Applications. In: Obermaisser, R., Nah, Y., Puschner, P., Rammig, F.J. (eds.) SEUS 2007. LNCS, vol. 4761, pp. 547–559. Springer, Heidelberg (2007)
Luo, R.C., Chang, C.C., Lai, C.C.: Multisensor Fusion and Integration: Theories, Applications, and its Perspectives. IEEE Sensors Journal 11(12), 3122–3138 (2011)
Bedworth, M.D., O’Brien, J.C.: The Omnibus Model: A New Model of Data Fusion? IEEE Aerospace and Electronic Systems Magazine 15(4), 30–36 (2000)
Nakamura, E.F., Loureiro, A.A.F., Frery, A.C.: Information Fusion for Wireless Sensor Networks: Methods, Models, and Classifications. ACM Computing Surveys 39(3), 9/1–9/55 (2007)
Zhang, X., Castellanos, J.G., Campbell, A.T.: P-MIP: Paging Extension for Mobile IP, Columbia University, pp. 127–141 (2002)
Wang, M., Georgiades, M., Tafazolli, R.: Signalling Cost Evaluation of Mobility Management Schemes for Different Core Network Architectural Arrangements in 3GPP LTE/SAE. In: Vehicular Technology Conference 2008, pp. 2253–2258 (May 2008)
Karatsinides, S.E.: Enhancing Filter Robustness in Cascaded GPS-INS Integrations. IEEE Trans. on Aerospace and Electronic Systems 30(4), 1001–1008 (1994)
Bell, W.B., Gorre, R.G., Cockrell, L.D.: Cascading Filtered DTS Data into a Loosely Coupled GPS/INS System. In: Proceedings of IEEE PLANS 1998, pp. 586–593 (1998)
Carlson, N.A.: Federated Filter for Fault-Tolerant Integrated Systems. In: Proceedings of 1988 IEEE PLANS, pp. 110–119 (1988)
Felter, S.C.: An overview of decentralized Kalman filter techniques. In: Proceedings of IEEE Southern Tier Technical Conference, pp. 79–87 (1990)
Liggins, M.E., Chong, C.-Y., Kadar, I., Alford, M.G., Vannicola, V., Thomopoulos, S.: Distributed Fusion Architectures and Algorithms for Target Tracking. Proceedings of the IEEE 85(1), 95–107 (1997)
Evans, F.A., Wilcox, J.C.: Experimental Strapdown Redundant Sensor Inertial Navigation System. Journal of Spacecraft and Rockets 7(9), 1070–1074 (1970)
Potter, J.E., Deckert, J.C.: Minimax Failure Detection and Identification in Redundant Gyro and Accelerometer System. Journal of Spacecraft 10(4), 236–243 (1973)
Spitzer, C.R.: The Avionics Handbook. CRC Press LLC (2001)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Bhattacharya, B., Saha, B. (2015). Signalling Cost Analysis of Community Model. In: Satapathy, S., Biswal, B., Udgata, S., Mandal, J. (eds) Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014. Advances in Intelligent Systems and Computing, vol 328. Springer, Cham. https://doi.org/10.1007/978-3-319-12012-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-12012-6_6
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-12011-9
Online ISBN: 978-3-319-12012-6
eBook Packages: EngineeringEngineering (R0)