A Review of ROI Image Retrieval Techniques | SpringerLink
Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 328))

Abstract

Content based image retrieval involves extraction of global and region features of images for improving their retrieval performance in large image databases. Region based feature have shown to be more effective than global features as they are capable of reflecting users specific interest with greater accuracy. However success of region based methods largely depends on the segmentation technique used to automatically specify the region of interest (ROI) in the query. Apart from this user can also specify ROI’s in an image. The ROI image retrieval involves the task of formulation of region based query, feature extraction, indexing and retrieval of images containing similar region as specified in the query. In this paper state-of-the-art techniques for ROI image retrieval are discussed. Comparative study of each of these techniques together with pros and cons of each technique are listed. The paper is concluded with our views on challenges faced by researchers and further scope of research in the area. The major goal of the paper is to provide a comprehensive reference source for the researchers involved in image retrieval based on ROI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wong, K.-M., Cheung, K.-W., Po, L.-M.: MIRROR: An Interactive Content Based Image Retrieval System. In: Proc. of IEEE Int. Symposium on Circuits and Systems (ISCAS 2005), vol. 2, pp. 1541–1544 (2005), http://dx.doi.org/10.1109/ISCAS.2005.1464894

  2. Broek, E.L., Kisters, P.M.F., Vuurpijl, L.G.: The utilization of human color categorization for content-based image retrieval. In: Proc. of the SPIE, vol. 5292, pp. 351–362 (2004)

    Google Scholar 

  3. Tian, Q., Wu, Y., Huang, T.S.: Combine User Defined Region-of-Interest and Spatial Layout for Image Retrieval. In: Proc. of IEEE Int. Conf. on Image Processing (ICIP 2000), vol. 3, pp. 746–749 (2000), http://dx.doi.org/10.1109/ICIP.2000.899562

  4. Prasad, B.G., Biswas, K.K., Gupta, S.K.: Region-Based Image Retrieval using Integrated Color, Shape and Location Index. In: Computer Vision and Image Understanding, vol. 94, pp. 193–233 (2004), http://dx.doi.org/10.1016/j.cviu.2003.10.016

  5. Moghaddam, B., Biermann, H., Margaritis, D.: Regions-of-Interest and Spatial Layout for Content-Based Image Retrieval. Multimedia Tools and Applications 14(2), 201–210 (2001), http://dx.doi.org/10.1023/A:1011355417880

    Article  Google Scholar 

  6. Chan, Y.-K., Ho, Y.-A., Liu, Y.-T., Chen, R.-C.: A ROI image retrieval method based on CVAAO. Image and Vision Computing 26, 1540–1549 (2008)

    Article  Google Scholar 

  7. Lee, J., Nang, J.: Content-Based Image Retrieval Method using the Relative Location of Multiple ROIs. Advances in Electrical and Computer Engineering 11(3), 85–90 (2011)

    Article  Google Scholar 

  8. Ko, B.C., Byun, H.: FRIP: A Region-Based Image Retrieval Tool Using Automatic Image Segmentation and Stepwise Boolean AND Matching. IEEE Transactions on Multimedia 7(1) (February 2005)

    Google Scholar 

  9. Vu, K., Hua, K.A., Tavanapong, W.: Image retrieval based on regions of interest. IEEE Transactions on Knowledge and Data Engineering 15(4), 1045–1049 (2003)

    Article  Google Scholar 

  10. Zhang, J., Yoo, C.-W., Ha, S.-W.: ROI Based Natural Image Retrieval using Color and Texture Feature. Fuzzy Systems and Knowledge Discovery (2007)

    Google Scholar 

  11. Chen, T., Chen, L.-H., Ma, K.-K.: Colour Image Indexing Using SOM for Region-of-Interest Retrieval. Pattern Analysis & Applications 2, 164–171 (1999)

    Article  Google Scholar 

  12. Zhou, Q., Ma, L., Celenk, M., Chelberg, D.: Content-Based Image Retrieval Based on ROI Detection and Relevace Feedback. Multimedia Tools and Application 27, 251–281 (2005)

    Article  Google Scholar 

  13. Hsiao, M.-J., Huang, Y.-P., Tsai, T., Chiang, T.-W.: An Efficient and Flexible Matching Strategy for Content-based Image Retrieval. Life Science Journal 7(1) (2010)

    Google Scholar 

  14. Huang, C., Liu, Q., Yu, S.: Regions of interest extraction from color image based on visual saliency. Journal of Supercomp., doi:10.1007/s11227-010-0532-x.

    Google Scholar 

  15. Wang, Z., Liu, G., Yang, Y.: A New ROI Based Image Retrieval System using an auxiliary Gaussian Weighting Scheme. Multimedia Tools Application (2012), doi:10.1007/s11042-012-1059-3.

    Google Scholar 

  16. Yang, L., Geng, B., Cai, Y., Hua, X.-S.: Object Retrieval Using Visual Query Context. IEEE Transactions on Multimedia 13(6) (December 2011)

    Google Scholar 

  17. Carson, C., Thomas, M., Belongie, S., Hellerstein, J.M., Malik, J.: Blobworld:Image Segmentation Using Expectation-Maximization and Its Application to Image Querying. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(8), 1026–1038 (2002)

    Article  Google Scholar 

  18. Wang, J.Z., Li, J., Wiederhold, G.: SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture Libraries. IEEE Transactions On Pattern Analysis and Machine Intelligence 23(9) (September 2001)

    Google Scholar 

  19. Shrivastava, N., Tyagi, V.: Content based image retrieval based on relative locations of multiple regions of interest using selective regions matching. Inform. Sci. 259, 212–224 (2013), http://dx.doi.org/10.1016/j.ins.2013.08.043

    Article  Google Scholar 

  20. Liu, Y., Zhang, D., Lu, G.: Region-based image retrieval with high-level semantics using decision tree learning. Pattern Recognition 41, 2554–2570 (2008)

    Article  MATH  Google Scholar 

  21. Jing, F., Li, M.: Relevance Feedback in Region-Based Image Retrieval. IEEE Transactions on Circuits and Systems for Video Technology 14(5) (May 2004)

    Google Scholar 

  22. Zhang, D., Islam, M.M., Lu, G., Hou, J.: Semantic Image Retrieval Using Region Based Inverted File. In: Proceedings of Digital Image Computing: Techniques and Applications, pp. 242–249 (2009)

    Google Scholar 

  23. Li, W.-J., Yeung, D.-Y.: Localized Content-Based Image Retrieval Through Evidence Region Identification. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 1666–1673 (2009)

    Google Scholar 

  24. Faloutsos, C., Barber, R., Flickner, M., Hafner, J., Niblack, W., Petkovic, D., Equitz, W.: Efficient and effective querying by image content, J. Intell. Inf. Syst. 3(3-4), 231–262 (1994)

    Article  Google Scholar 

  25. Pentland, A., Picard, R.W., Scaroff, S.: Photobook: content-based manipulation for image databases. Int. J. Comput. Vision 18(3), 233–254 (1996)

    Article  Google Scholar 

  26. Gupta, A., Jain, R.: Visual information retrieval, Commun. ACM 40(5), 70–79 (1997)

    Article  Google Scholar 

  27. Smith, J.R., Chang, S.F.: Visualseek: a fully automatic content-based query system. In: Proceedings of ACM International Conference on Multimedia, pp. 87–98 (1996)

    Google Scholar 

  28. Ma, W.Y., Manjunath, B.: Netra: a toolbox for navigating large image databases. In: Proceedings of International Conference on Image Processing, pp. 568–571 (1997)

    Google Scholar 

  29. Wang, J.Z., Li, J., Wiederhold, G.: Simplicity: semantics-sensitive integrated matching for picture libraries. IEEE Trans. Pattern Mach. Intell. 23(9), 947–963 (2001)

    Article  Google Scholar 

  30. Jing, F., Li, M., Zhang, L., Zhang, H., Zhang, B.: Learning in region-based image retrieval. In: Proceedings of International Conference on Image and Video Retrieval (CIVR 2003), pp. 206–215 (2003)

    Google Scholar 

  31. Town, C.P., Sinclair, D.: Content-based image retrieval using semantic visual categories, Society for Manufacturing Engineers, Technical Report MV01 211 (2001)

    Google Scholar 

  32. Cao, L., Fei-Fei, L.: Spatially coherent latent topic model for concurrent object segmentation and classification. In: Proceedings of IEEE International Conference in Computer Vision, ICCV (2007)

    Google Scholar 

  33. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. In: Proceedings of Computer Vision and Pattern Recognition, Workshop on Generative-Model Based Vision, pp. 178–185 (2004)

    Google Scholar 

  34. Chang, E., Tong, S.: SVM active—support vector machine active learning for image retrieval. In: Proceedings of ACM International Multimedia Conference, pp. 107–118 (October 2001)

    Google Scholar 

  35. Nguyen, G.P., Worring, M.: Relevance feedback based saliency adaptation in CBIR. ACM Multimedia Syst. 10(6), 499–512 (2005)

    Article  Google Scholar 

  36. Mezaris, V., Kompatsiaris, I., Strintzis, M.G.: An ontology approach to object-based image retrieval. In: Proceedings of International Conference on Image Processing, pp. 511–514 (2003)

    Google Scholar 

  37. Tao, D., Tang, X., Li, X., Wu, X.: Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval. IEEE Trans. Pattern Anal. and Mach. Intel. (TPAMI) 28(7), 1088–1099 (2006)

    Google Scholar 

  38. Tao, D., Tang, X., Li, X., Rui, Y.: Kernel direct biased discriminant analysis: a new content-based image retrieval relevance feedback algorithm. IEEE Trans. Multimedia (TMM) 8(4), 716–727 (2006)

    Article  Google Scholar 

  39. Tao, D., Li, X., Maybank, S.J.: Negative samples analysis in relevance feedback, IEEE Trans. Knowl. IEEE Trans. Knowl. Data Eng. 19(4), 568–580 (2007)

    Article  Google Scholar 

  40. Shrivastava, N., Tyagi, V.: An effective scheme for image texture classification based on binary local structure pattern. Visual Computer (2013), http://dx.doi.org/10.1007/s00371-013-0887-0

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Shrivastava, N., Tyagi, V. (2015). A Review of ROI Image Retrieval Techniques. In: Satapathy, S., Biswal, B., Udgata, S., Mandal, J. (eds) Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014. Advances in Intelligent Systems and Computing, vol 328. Springer, Cham. https://doi.org/10.1007/978-3-319-12012-6_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12012-6_56

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12011-9

  • Online ISBN: 978-3-319-12012-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics