Abstract
We propose a method for detecting dyadic interactions: fine-grained, coordinated interactions between two people. Our model is capable of recognizing interactions such as a hand shake or a high five, and locating them in time and space. At the core of our method is a pictorial structures model that additionally takes into account the fine-grained movements around the joints of interest during the interaction. Compared to a bag-of-words approach, our method not only allows us to detect the specific type of actions more accurately, but it also provides the specific location of the interaction. The model is trained with both video data and body joint estimates obtained from Kinect. During testing, only video data is required. To demonstrate the efficacy of our approach, we introduce the ShakeFive dataset that consists of videos and Kinect data of hand shake and high five interactions. On this dataset, we obtain a mean average precision of 49.56%, outperforming a bag-of-words approach by 23.32%. We further demonstrate that the model can be learned from just a few interactions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Poppe, R.: A survey on vision-based human action recognition. Image and Vision Computing 28(6), 976–990 (2010)
Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: A local SVM approach. In: Proceedings International Conference on Pattern Recognition (ICPR), Cambridge, UK, pp. 32–36 (2004)
Wang, H., Kläser, A., Schmid, C., Cheng-Lin, L.: Dense trajectories and motion boundary descriptors for action recognition. International Journal of Computer Vision (IJCV) 103(1), 60–79 (2013)
Felzenszwalb, P.F., Huttenlocher, D.: Pictorial structures for object recognition. International Journal of Computer Vision (IJCV) 61(1), 55–79 (2005)
Felzenszwalb, P.F., Girshick, R.B., McAllester, D.A., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 32(9), 1627–1645 (2010)
Yang, Y., Ramanan, D.: Articulated human detection with flexible mixtures of parts. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 35(12), 2878–2890 (2013)
Bourdev, L., Malik, J.: Poselets: Body part detectors trained using 3D human pose annotations. In: Proceedings IEEE International Conference on Computer Vision (ICCV), Kyoto, Japan, pp. 1365–1372 (2009)
Maji, S., Bourdev, L.D., Malik, J.: Action recognition from a distributed representation of pose and appearance. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Colorado Springs, CO, pp. 3177–3184 (2011)
Raptis, M., Sigal, L.: Poselet key-framing: A model for human activity recognition. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, OR, pp. 2650–2657 (2013)
Yao, B.Z., Nie, B.X., Liu, Z., Zhu, S.C.: Animated pose templates for modeling and detecting human actions. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 36(3), 436–452 (2014)
Jhuang, H., Gall, J., Zuffi, S., Schmid, C., Black, M.J.: Towards understanding action recognition. In: Proceedings IEEE International Conference on Computer Vision (ICCV), Sydney, Australia, pp. 3192–3199 (2013)
Gupta, A., Kembhavi, A., Davis, L.: Observing human-object interactions: Using spatial and functional compatibility for recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 31(10), 1775–1789 (2009)
Yao, B., Fei-Fei, L.: Recognizing human-object interactions in still images by modeling the mutual context of objects and human poses. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 34(9), 1691–1703 (2012)
Lan, T., Wang, Y., Yang, W., Robinovitch, S.N., Mori, G.: Discriminative latent models for recognizing contextual group activities. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(8), 1549–1562 (2012)
Choi, W., Savarese, S.: Understanding collective activities of people from videos. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 36(6), 1242–1257 (2014)
Cristani, M., Bazzani, L., Paggetti, G., Fossati, A., Tosato, D., Del Bue, A., Menegaz, G., Murino, V.: Social interaction discovery by statistical analysis of F-formations. In: Proceedings British Machine Vision Conference (BMVC), Dundee, United Kingdom, pp. 1–12 (2011)
Chang, M.C., Krahnstoever, N., Ge, W.: Probabilistic group-level motion analysis and scenario recognition. In: Proceedings IEEE International Conference on Computer Vision (ICCV), Barcelona, Spain, pp. 747–754 (2011)
Patron-Perez, A., Marszałek, M., Reid, I., Zisserman, A.: Structured learning of human interactions in tv shows. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 34(12), 2441–2453 (2012)
Weinzaepfel, P., Revaud, J., Harchaoui, Z., Schmid, C.: DeepFlow: Large displacement optical flow with deep matching. In: Proceedings IEEE International Conference on Computer Vision (ICCV), Sydney, Australia, pp. 1385–1392 (2013)
Ryoo, M.S., Aggarwal, J.K.: UT-Interaction Dataset, ICPR contest on semantic description of human activities, SDHA (2010), http://cvrc.ece.utexas.edu/SDHA2010/Human_Interaction.html
Maji, S., Berg, A.C., Malik, J.: Classification using intersection kernel support vector machines is efficient. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage, AK, pp. 1–8 (2008)
Mittal, A., Blaschko, M.B., Zisserman, A., Torr, P.H.S.: Taxonomic multi-class prediction and person layout using efficient structured ranking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 245–258. Springer, Heidelberg (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
van Gemeren, C., Tan, R.T., Poppe, R., Veltkamp, R.C. (2014). Dyadic Interaction Detection from Pose and Flow. In: Park, H.S., Salah, A.A., Lee, Y.J., Morency, LP., Sheikh, Y., Cucchiara, R. (eds) Human Behavior Understanding. HBU 2014. Lecture Notes in Computer Science, vol 8749. Springer, Cham. https://doi.org/10.1007/978-3-319-11839-0_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-11839-0_9
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11838-3
Online ISBN: 978-3-319-11839-0
eBook Packages: Computer ScienceComputer Science (R0)