Using Scale-Space Anisotropic Smoothing for Text Line Extraction in Historical Documents | SpringerLink
Skip to main content

Using Scale-Space Anisotropic Smoothing for Text Line Extraction in Historical Documents

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8814))

Included in the following conference series:

Abstract

Text line extraction is vital pre-requisite for various document processing tasks. This paper presents a novel approach for text line extraction which is based on Gaussian scale space and dedicated binarization that utilize the inherent structure of smoothed text document images. It enhances the text lines in the image using multi-scale anisotropic second derivative of Gaussian filter bank at the average height of the text line. It then applies a binarization, which is based on component-tree and is tailored towards line extraction. The final stage of the algorithm is based on an energy minimization framework for removing spurious text line and assigning connected components to lines. We have tested our approach on various datasets written in different languages at range of image quality and received high detection rates, which outperform state-of-the-art algorithms. Our MATLAB code is publicly available. (http://www.cs.bgu.ac.il/~rafico/LineExtraction.zip)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baechler, M., Liwicki, M., Ingold, R.: Text line extraction using dmlp classifiers for historical manuscripts. In: ICDAR, pp. 1029–1033 (2013)

    Google Scholar 

  2. Bar-Yosef, I., Hagbi, N., Kedem, K., Dinstein, I.: Text Line Segmentation for Degraded Handwritten Historical Documents. In: ICDAR, pp. 1161–1165 (2009)

    Google Scholar 

  3. Biller, O., Kedem, K., Dinstein, I., El-Sana, J.: Evolution maps for connected components in text documents. In: ICFHR, pp. 403–408 (2012)

    Google Scholar 

  4. Bukhari, S.S., Shafait, F., Breuel, T.M.: Script-independent handwritten textlines segmentation using active contours. In: ICDAR, pp. 446–450 (2009)

    Google Scholar 

  5. Cohen, R., Asi, A., Kedem, K., El-Sana, J., Dinstein, I.: Robust text and drawing segmentation algorithm for historical documents. In: HIP, pp. 110–117 (2013)

    Google Scholar 

  6. Delong, A., Osokin, A., Isack, H.N., Boykov, Y.: Fast approximate energy minimization with label costs. IJCV 96(1), 1–27 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Diem, M., Kleber, F., Sablatnig, R.: Text line detection for heterogeneous documents. In: ICDAR, pp. 743–747 (2013)

    Google Scholar 

  8. Gatos, B., Stamatopoulos, N., Louloudis, G.: ICDAR2009 handwriting segmentation contest. IJDAR 14(1), 25–33 (2011)

    Article  Google Scholar 

  9. Gatos, B., Stamatopoulos, N., Louloudis, G.: ICFHR 2010 handwriting segmentation contest. In: ICFHR, pp. 737–742 (2010)

    Google Scholar 

  10. Li, Y., Zheng, Y., Doermann, D., Jaeger, S.: Script-independent text line segmentation in freestyle handwritten documents. IEEE TPAMI 30(8), 1313–1329 (2008)

    Article  Google Scholar 

  11. Lindeberg, T.: Feature detection with automatic scale selection. IJCV 30(2), 79–116 (1998)

    Article  Google Scholar 

  12. Naegel, B., Wendling, L.: A document binarization method based on connected operators. Pattern Recognition Letters 31(11), 1251–1259 (2010)

    Article  Google Scholar 

  13. Rabaev, I., Biller, O., El-Sana, J., Kedem, K., Dinstein, I.: Text line detection in corrupted and damaged historical manuscripts. In: ICDAR, pp. 812–816 (2013)

    Google Scholar 

  14. Saabni, R., Asi, A., El-Sana, J.: Text line extraction for historical document images. Pattern Recognition Letters 35, 23–33 (2014)

    Article  Google Scholar 

  15. Shi, Z., Setlur, S., Govindaraju, V.: A steerable directional local profile technique for extraction of handwritten arabic text lines. In: ICDAR, pp. 176–180 (2009)

    Google Scholar 

  16. Stamatopoulos, N., Gatos, B., Louloudis, G., Pal, U., Alaei, A.: ICDAR 2013 handwriting segmentation contest. In: ICDAR, pp. 1402–1406 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafi Cohen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Cohen, R., Dinstein, I., El-Sana, J., Kedem, K. (2014). Using Scale-Space Anisotropic Smoothing for Text Line Extraction in Historical Documents. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2014. Lecture Notes in Computer Science(), vol 8814. Springer, Cham. https://doi.org/10.1007/978-3-319-11758-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11758-4_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11757-7

  • Online ISBN: 978-3-319-11758-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics