A Hybrid Network Anomaly and Intrusion Detection Approach Based on Evolving Spiking Neural Network Classification | SpringerLink
Skip to main content

A Hybrid Network Anomaly and Intrusion Detection Approach Based on Evolving Spiking Neural Network Classification

  • Conference paper
  • First Online:
E-Democracy, Security, Privacy and Trust in a Digital World (e-Democracy 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 441))

Included in the following conference series:

Abstract

The evolution of network services is closely connected to the understanding and modeling of their corresponding traffic. The obtained conclusions are related to a wide range of applications, like the design of the transfer lines’ capacity, the scalar taxing of customers, the security violations and the spotting of errors and anomalies. Intrusion Detection Systems (IDS) monitor and analyze the events in traffic, to locate indications for potential intrusion and integrity violation attacks, resulting in the violation of trust and availability of information resources. They act in a complimentary mode with the existing security infrastructure, aiming in the early warning of the administrator, offering him details that will let him reach proper decisions and correction actions. This paper proposes a network-based online system, which uses minimum computational power to analyze only the basic characteristics of network flow, so as to spot the existence and the type of a potential network anomaly. It is a Hybrid Machine Learning Anomaly Detection System (HMLADS), which employs classification performed by Evolving Spiking Neural Networks (eSNN), in order to properly label a Potential Anomaly (PAN) in the net. On the other hand it uses a Multi-Layer Feed Forward (MLFF) ANN to classify the exact type of the intrusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dahlia, A., Zainaddin, A., Hanapi, Z.M.: Hybrid of fuzzy clustering neural network over NSL dataset for intrusion detection system. J. Comput. Sci. 9(3), 391–403 (2013)

    Article  Google Scholar 

  2. Delorme, A., Perrinet, L., Thorpe, S.J.: Networks of integrate-and-fire neurons using rank order coding B: spike timing dependant plasticity and emergence of orientation selectivity. Neurocomputing 38–40(1–4), 539–545 (2000)

    Google Scholar 

  3. Denning, E.D.: An Intrusion-Detection model. IEEE Trans. Softw. Eng. 13, 222–232 (1987). doi:10.1109/TSE.1987.232894

    Article  Google Scholar 

  4. Garcıa, P., Verdejo, J., Fernandez, G., Vazquez, E.: Anomaly-based network intrusion detection: techniques, systems & challenges. Comput. Secur. 28, 18–28 (2009). Elsevier

    Article  Google Scholar 

  5. George, H.J.: Estimating continuous distributions in Bayesian classifiers. In: Proceedings of the UAI’ 95, pp. 338–345. Morgan Kaufmann Publishers Inc., San Francisco (1995)

    Google Scholar 

  6. Heaton, J.: Introduction to Neural Networks with Java (2008). ISBN 097732060X

    Google Scholar 

  7. Jakir, H., Rahman, A., Sayeed, S., Samsuddin, K., Rokhani, F.: A modified hybrid fuzzy clustering algorithm for data partitions. Aust. J. Basic Appl. Sci. 5, 674–681 (2011)

    Google Scholar 

  8. Kasabov, N.: Evolving Connectionist Systems: The Knowledge Engineering Approach. Springer, New York (2006)

    Google Scholar 

  9. Günes, K.H., Heywood, A.N.Z., Heywood, M.I.: Selecting Features for Intrusion Detection: A Feature Relevance Analysis on KDD 99 Intrusion Detection Datasets, Natural Sciences and Engineering Research Council of Canada (1999)

    Google Scholar 

  10. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: 14th International Joint Conference on Artificial Intelligence, vol. 2, no. 12, pp. 1137–1143 (1995)

    Google Scholar 

  11. Βharti, K., Shweta, J., Sanyam, S.: Fuzzy K-mean clustering via random forest for intrusion detection system. Int. J. Comput. Sci. Eng. 02(06), 2197–2200 (2010)

    Google Scholar 

  12. Mehdi, B., Mohammad, B.: An overview to software architecture in intrusion detection system. Int. J. Soft Comput. Softw. Eng. (2012). doi:10.7321/jscse.v1.n1.1

    Google Scholar 

  13. Muna, M., Jawhar, T., Mehrotra, M.: Design network intrusion system using hybrid fuzzy neural network. Int. J. Comput. Sci. Secur. 4(3), 285–294 (2009)

    Google Scholar 

  14. Mehdi, M., Zulkernine, M.: A neural network based system for intrusion detection and classification of attacks. In: IEEE International Conference on Advances in Intelligent Systems - Theory and Applications (2004)

    Google Scholar 

  15. Mukhopadhyay, I.: Implementation of Kalman filter in intrusion detection system. In: Proceeding of International Symposium on Communications and IT, Vientiane (2008)

    Google Scholar 

  16. Novikov, D., Yampolskiy, R.V., Reznik, L.: Anomaly detection based intrusion detection. In: Proceedings of the Third International Conference on IT: New Generations, 10–12 April. IEEE (2006)

    Google Scholar 

  17. Puketza, N., Zhang, K., Chung, M., Mukherjee, B., Olsson, R.A.: A methodology for testing intrusion detection system. IEEE Trans. Softw. Eng. 22, 719–729 (1996)

    Article  Google Scholar 

  18. Han, S.-J., Cho, S.-B.: Evolutionary neural networks for anomaly detection based on the behavior of a program. IEEE Trans. Syst. Man Cybern. 36, 559–570 (2005)

    Article  Google Scholar 

  19. Schliebs, S., Defoin-Platel, M., Kasabov, N.: Integrated feature and parameter optimization for an evolving spiking neural network. In: 15th International Conference, ICONIP 2008 (2009)

    Google Scholar 

  20. Stolfo, S.J., Wei, F., Wenke, L., Prodromidis, A., Chan, P.K.: Cost-based modeling and evaluation for data mining with application to fraud and intrusion detection: results from the JAM project. In: DISCEX ‘00 (2000)

    Google Scholar 

  21. Suguna, J., Selvi, A.M.: Ensemble fuzzy clustering for mixed numeric and categorical data. Int. J. Comput. Appli. 2012(42), 19–23 (2012). doi:10.5120/5673-7705

    Google Scholar 

  22. Tartakovskya, A.G., Rozovskii, B.L., Blazek, R.B., Hongjoong, K.: A novel approach to detection of intrusions in computer networks via adaptive sequential and batch-sequential change-point detection methods. IEEE 54(9), 3372–3382 (2006)

    Google Scholar 

  23. Zhou, T.-J.: The research of intrusion detection based on genetic neural network. IEEE Xplore Press, Hong Kong, pp. 276–281 (2008). doi:10.1109/ICWAPR.2008.4635789

  24. Thorpe, S.J., Delorme, A., van Rullen, R.: Spike-based strategies for rapid processing. Neural Networks 14(6–7), 715–725 (2001)

    Article  Google Scholar 

  25. Thorpe, S.J., Gautrais, J.: Rank order coding. In: CNS ’97, pp. 113–118 (1998)

    Google Scholar 

  26. Vapnik, V.: The Nature of Statistical Learning Theory, 2nd edn, p. 188. Springer, New York (1995). ISBN 10:0387945598

    Book  MATH  Google Scholar 

  27. Wei, L., Ghorbani, A.A.: Network anomaly detection based on wavelet analysis. EURASIP 2009, 1–16 (2009). (Article No. 4, Hindawi Publishing Corp., New York)

    Google Scholar 

  28. Wysoski, S.G., Benuskova, L., Kasabov, N.: Adaptive learning procedure for a network of spiking neurons and visual pattern recognition. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2006. LNCS, vol. 4179, pp. 1133–1142. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Demertzis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Demertzis, K., Iliadis, L. (2014). A Hybrid Network Anomaly and Intrusion Detection Approach Based on Evolving Spiking Neural Network Classification. In: Sideridis, A., Kardasiadou, Z., Yialouris, C., Zorkadis, V. (eds) E-Democracy, Security, Privacy and Trust in a Digital World. e-Democracy 2013. Communications in Computer and Information Science, vol 441. Springer, Cham. https://doi.org/10.1007/978-3-319-11710-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11710-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11709-6

  • Online ISBN: 978-3-319-11710-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics