Fingerprint Indexing Based on Combination of Novel Minutiae Triplet Features | SpringerLink
Skip to main content

Fingerprint Indexing Based on Combination of Novel Minutiae Triplet Features

  • Conference paper
Network and System Security (NSS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8792))

Included in the following conference series:

Abstract

Fingerprint indexing is a process of pre-filtering the template database before matching. The most common features used for fingerprint indexing are based on minutiae triplets. In this paper, we investigated the indexing performance based on some commonly used features of minutiae triplets and proposed to combine these features with some novel features of minutiae triplets for fingerprint indexing. Experiments on FVC 2000 DB2a and 2002 DB1a show that the proposed indexing method can perform better than state-of-the-art schemes for full fingerprint indexing, meanwhile, experimental results on NIST SD 14 show that the performance is improved significantly after the new features are added to the feature space, and is fairly good even for partial fingerprint indexing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Xi, K., Hu, J., Han, F.: Mobile device access control: an improved correlation based face authentication scheme and its java me application. Concurrency and Computation: Practice and Experience 24(10), 1066–1085 (2012)

    Article  Google Scholar 

  2. Xi, K., Tang, Y., Hu, J.: Correlation keystroke verification scheme for user access control in cloud computing environment. Comput. J. 54(10), 1632–1644 (2011)

    Article  Google Scholar 

  3. Sufi, F., Khalil, I.: Faster person identification using compressed ecg in time critical wireless telecardiology applications. J. Network and Computer Applications 34(1), 282–293 (2011)

    Article  Google Scholar 

  4. Sufi, F., Khalil, I.: An automated patient authentication system for remote telecardiology. In: International Conference on Intelligent Sensors, Sensor Networks and Information Processing, ISSNIP 2008, pp. 279–284 (December 2008)

    Google Scholar 

  5. Sufi, F., Khalil, I., Hu, J.: Ecg-based authentication. In: Stavroulakis, P., Stamp, M. (eds.) Handbook of Information and Communication Security, pp. 309–331. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Ahmad, T., Hu, J., Wang, S.: Pair-polar coordinate-based cancelable fingerprint templates. Pattern Recogn. 44(10-11), 2555–2564 (2011)

    Article  Google Scholar 

  7. Wang, S., Hu, J.: Alignment-free cancelable fingerprint template design: A densely infinite-to-one mapping (ditom) approach. Pattern Recogn. 45(12), 4129–4137 (2012)

    Article  Google Scholar 

  8. Xi, K., Ahmad, T., Han, F., Hu, J.: A fingerprint based bio-cryptographic security protocol designed for client/server authentication in mobile computing environment. Journal of Security and Communication Networks 4(5), 487–499 (2011)

    Article  Google Scholar 

  9. Xi, K., Hu, J.: Introduction to Bio-cryptography. In: Handbook of Information and Communication Security. Springer (2010)

    Google Scholar 

  10. Yang, W., Hu, J., Wang, S., Stojmenovic, M.: An alignment-free fingerprint bio-cryptosystem based on modified voronoi neighbor structures. Pattern Recognition 47(3), 1309–1320 (2014)

    Article  Google Scholar 

  11. Wang, S., Hu, J.: Design of alignment-free cancelable fingerprint templates via curtailed circular convolution. Pattern Recognition 47(3), 1321–1329 (2014)

    Article  Google Scholar 

  12. Yang, W., Hu, J., Wang, S., Yang, J.: Cancelable fingerprint templates with delaunay triangle-based local structures. In: Wang, G., Ray, I., Feng, D., Rajarajan, M. (eds.) CSS 2013. LNCS, vol. 8300, pp. 81–91. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Yang, W., Hu, J., Wang, S.: A finger-vein based cancellable bio-cryptosystem. In: Lopez, J., Huang, X., Sandhu, R. (eds.) NSS 2013. LNCS, vol. 7873, pp. 784–790. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  14. Lumini, A., Maio, D., Maltoni, D.: Continuous versus exclusive classification for fingerprint retrieval. Pattern Recogn. Lett. 18(10), 1027–1034 (1997)

    Article  Google Scholar 

  15. Cappelli, R., Lumini, A., Maio, D., Maltoni, D.: Fingerprint classification by directional image partitioning. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 402–421 (1999)

    Article  Google Scholar 

  16. Bhanu, B., Tan, X.: Fingerprint indexing based on novel features of minutiae triplets. IEEE Trans. Pattern Anal. Mach. Intell. 25(5), 616–622 (2003)

    Article  Google Scholar 

  17. de, J.B., Bazen, A.M., Gerez, S.H.: Indexing fingerprint databases based on multiple features. In: Proceedings SAFE, ProRISC, SeSens 2001, Utrecht, The Netherlands, STW, pp. 300–306 (November 2001)

    Google Scholar 

  18. Wang, Y., Hu, J., Phillips, D.: A fingerprint orientation model based on 2D fourier expansion (fomfe) and its application to singular-point detection and fingerprint indexing. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 573–585 (2007)

    Article  Google Scholar 

  19. Feng, J., Jain, A.K.: Filtering large fingerprint database for latent matching. In: Proc. Int. Conf. on Pattern Recognition (ICPR 2008), pp. 1–4 (2008)

    Google Scholar 

  20. Jain, A.K., Feng, J.: Latent fingerprint matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(1), 88–100 (2011)

    Article  Google Scholar 

  21. Yuan, B., Su, F., Cai, A.: Fingerprint retrieval approach based on novel minutiae triplet features. In: 2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 170–175 (2012)

    Google Scholar 

  22. Paulino, A.A., Liu, E., Cao, K., Jain, A.K.: Latent fingerprint indexing: Fusion of level 1 and level 2 features. In: Biometrics: Theory, Applications and Systems, Washington, D.C. (2013)

    Google Scholar 

  23. Wang, Y., Hu, J.: Global ridge orientation modeling for partial fingerprint identification. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 72–87 (2011)

    Article  Google Scholar 

  24. VeriFinger: Verifinger sdk (2013), http://www.neurotechnology.com/verifinger.html

  25. Germain, R., Califano, A., Colville, S.: Fingerprint matching using transformation parameter clustering. IEEE Computational Science Engineering 4(4), 42–49 (1997)

    Article  Google Scholar 

  26. Liang, X., Bishnu, A., Asano, T.: A robust fingerprint indexing scheme using minutia neighborhood structure and low-order delaunay triangles. IEEE Transactions on Information Forensics and Security 2(4), 721–733 (2007)

    Article  Google Scholar 

  27. Iloanusi, O., Gyaourova, A., Ross, A.: Indexing fingerprints using minutiae quadruplets. In: 2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 127–133 (2011)

    Google Scholar 

  28. Shuai, X., Zhang, C., Hao, P.: Fingerprint indexing based on composite set of reduced sift features. In: 19th International Conference on Pattern Recognition, ICPR 2008, pp. 1–4 (2008)

    Google Scholar 

  29. Jiang, X., Liu, M., Kot, A.: Fingerprint retrieval for identification. IEEE Transactions on Information Forensics and Security 1(4), 532–542 (2006)

    Article  Google Scholar 

  30. Liu, M., Yap, P.T.: Invariant representation of orientation fields for fingerprint indexing. Pattern Recogn. 45(7), 2532–2542 (2012)

    Article  Google Scholar 

  31. SD14: Nist special database 14 (2013), http://www.nist.gov/srd/nistsd14.cfm

  32. NBIS: Nist biometric image software (2013), http://www.nist.gov/itl/iad/ig/nbis.cfm

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhou, W., Hu, J., Wang, S., Petersen, I., Bennamoun, M. (2014). Fingerprint Indexing Based on Combination of Novel Minutiae Triplet Features. In: Au, M.H., Carminati, B., Kuo, CC.J. (eds) Network and System Security. NSS 2015. Lecture Notes in Computer Science, vol 8792. Springer, Cham. https://doi.org/10.1007/978-3-319-11698-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11698-3_29

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11697-6

  • Online ISBN: 978-3-319-11698-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics