Uncertainty Modeling and Propagation in Musculoskeletal Modeling | SpringerLink
Skip to main content

Uncertainty Modeling and Propagation in Musculoskeletal Modeling

  • Conference paper
Knowledge and Systems Engineering

Abstract

Biomechanical input data of in silico models are subject to uncertainties due to subject variability, experimental protocol and computing technique. Traditional perturbation analysis showed important drawbacks such as unobvious definition of the true range of value for the sensitivity analysis. In this present study, we used a novel framework to model the uncertainties of thigh mass property as well as to quantify their impact on the thigh muscle force estimation. A simplified patient specific musculoskeletal model (3 segments, 2 joints and 8 hip flexor muscles) of a post-polio residual paralysis subject was developed. Knowledge-based fusion pbox was used to model the uncertainties of the thigh mass property. Then, a Monte Carlo simulation was performed to quantify their impact on the thigh muscle force estimation through forward dynamics simulation. The global range of value of the rectus femoris force is from 2327.59 ± 39.32 N to 3353.16 ± 383.8 N at the peak level. The global range of value of the gracilis force is from 143.53 ± 2.35 N to 159.27 ± 8 N at the peak level. Cumulative probability functions of these ranges were presented and discussed. Our study suggested that under input data uncertainties, the musculoskeletal simulation results needs to be determined within a global range of values. Consequently, the clinical use of such global range will make the decision making more reliable. Thus, our study could be used as a guideline for such a purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Viceconti, M., Clapworthy, G., Van Sint Jan, S.: The Virtual Physiological Human - a European initiative for in silico human modelling. Journal of Physiological Sciences 58(7), 441–446 (2008)

    Article  Google Scholar 

  2. Périé, D., Sales De Gauzy, J., Ho Ba Tho, M.C.: Biomechanical evaluation of Cheneau-Toulouse-Munster brace in the treatment of scoliosis using optimisation approach and finite element method. Med. Biol. Eng. Comput. 40(3), 296–301 (2002)

    Google Scholar 

  3. Chabanas, M., Luboz, V., Payan, Y.: Patient specific Finite Element model of the face soft tissue for computer-assisted maxillofacial surgery. Medical Image Analysis 7(2), 131–151 (2003)

    Article  Google Scholar 

  4. Arnold, A.S., Delp, S.L.: Computer modeling of gait abnormalities in cerebral palsy: application to treatment planning. Theoretical Issues in Ergonomics Science 6, 305–312 (2005)

    Article  Google Scholar 

  5. Dao, T.T., Marin, F., Pouletaut, P., Aufaure, P., Charleux, F.: Ho Ba Tho, M.C. Estimation of Accuracy of Patient Specific Musculoskeletal Modeling: Case Study on a Post Polio Residual Paralysis Subject. Computer Method in Biomechanics and Biomedical Engineering 15(7), 745–751 (2012)

    Google Scholar 

  6. Fregly, B.J., Boninger, M.L., Reinkensmeyer, D.J.: Personalized neuromusculoskeletal modeling to improve treatment of mobility impairments: a perspective from European research sites. Journal of NeuroEngineering and Rehabilitation 9(18), 1–11 (2012)

    Google Scholar 

  7. Dao, T.T., Pouletaut, P., Charleux, F., Lazáry, Á., Eltes, P., Varga, P.P., Ho Ba Tho, M.C.: Estimation of Patient Specific Lumbar Spine Muscle Forces Using Multi-Physical Musculoskeletal Model and Dynamic MRI. In: Huynh, V.N., Denoeux, T., Tran, D.H., Le, A.C., Pham, B.S. (eds.) KSE 2013, Part II. AISC, vol. 245, pp. 425–438. Springer, Heidelberg (2014)

    Google Scholar 

  8. Dao, T.T., Marin, F., Ho Ba Tho, M.C.: Sensitivity of the anthropometrical and geometrical parameters of the bones and muscles on a musculoskeletal model of the lower limbs. In: Proceedings of the 31th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5251–5254 (2009)

    Google Scholar 

  9. Pàmies-Vilà, R., Font-Llagunes, J.M., Cuadrado, J., Alonso, F.J.: Analysis of different uncertainties in the inverse dynamic analysis of human gait. Mechanism and Machine Theory 58, 153–164 (2012)

    Article  Google Scholar 

  10. Dao, T.T.: Ho Ba Tho, M.C. Uncertainty Modeling of Input Data for a Biomechanical System of Systems. In: Proceedings of 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4581–4584 (2013)

    Google Scholar 

  11. Nagano, A., Gerritsen, K.G.M., Fukashiro, S.: A sensitivity analysis of the calculation of mechanical output through inverse dynamics: a computer simulation study. Journal of Biomechanics 33(10), 1313–1318 (2000)

    Article  Google Scholar 

  12. Silva, M.P.T., Ambrósio, J.A.C.: Sensitivity of the results produced by the inverse dynamic analysis of a human stride to perturbed input data. Gait & Posture 19(1), 35–49 (2004)

    Article  Google Scholar 

  13. Rao, G., Amarantini, D., Berton, E., Favier, D.: Influence of body segments’ parameters estimation models on inverse dynamics solutions during gait. Journal of Biomechanics 39(8), 1531–1536 (2006)

    Article  Google Scholar 

  14. Scovil, C.Y., Ronsky, J.L.: Sensitivity of a Hill-based muscle model to perturbations in model parameters. Journal of Biomechanics 39(11), 2055–2063 (2006)

    Article  Google Scholar 

  15. Lawson, S.E.M., Chteau, H., Pourcelot, P., Denoix, J.M., Crevier-Denoix, N.: Sensitivity of an equine distal limb model to perturbations in tendon paths, origins and insertions. Journal of Biomechanics 40(11), 2510–2516 (2007)

    Article  Google Scholar 

  16. Chen, L., Ren, L.: The Influence of Intrinsic Muscle Properties on Musculoskeletal System Stability: A Modelling Study. Journal of Bionic Engineering 7, S158–S165 (2010)

    Google Scholar 

  17. Carbone, V., van der Krogt, M.M., Koopman, H.F.J.M., Verdonschot, N.: Sensitivity of subject-specific models to errors in musculo-skeletal geometry. Journal of Biomechanics 45(14), 2476–2480 (2012)

    Article  Google Scholar 

  18. Ackland, D.C., Lin, Y.C., Pandy, M.G.: Sensitivity of model predictions of muscle function to changes in moment arms and muscle-tendon properties: A Monte-Carlo analysis. Journal of Biomechanics 45(8), 1463–1471 (2012)

    Article  Google Scholar 

  19. Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E., Thelen, D.G.: OpenSim: Open-source Software to Create and Analyze Dynamic Simulations of Movement. IEEE Transactions on Biomedical Engineering 54(11), 1940–1950 (2007)

    Article  Google Scholar 

  20. Thelen, D.G., Anderson, F.C., Delp, S.L.: Generating dynamic simulations of movement using computed muscle control. J. Biomech. 36, 321–328

    Google Scholar 

  21. Dempster, W.T., Gaughran, G.R.L.: Properties of body segments based on size and weight. American Journal of Anatomy 120, 33–54 (1967)

    Article  Google Scholar 

  22. Clauser, C.E., McConville, J.T., Young, J.W.: Weight, volume and center of mass of segments of the human body. AMRL-TR-69-70. Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, Ohio (1969)

    Google Scholar 

  23. Erdemir, A., McLean, S., Herzog, W., van den Bogert, A.J.: Model-based estimation of muscle forces exerted during movements. Clin. Biomech. 22, 131–154 (2007)

    Article  Google Scholar 

  24. Wesseling, M., de Groote, F., Jonkers, I.: The effect of perturbing body segment parameters on calculated joint moments and muscle forces during gait. J. Biomech. 47(2), 596–601 (2014)

    Article  Google Scholar 

  25. May, B., Saha, S., Saltzman, M.: A three-dimensional mathematical model of temporomandibular joint loading. Clinical Biomechanics 16, 489–495 (2001)

    Article  Google Scholar 

  26. van Den Bogert, A.J., Hupperets, M., Schlarb, H., Krabbe, B.: Predictive musculoskeletal simulation using optimal control: effects of added limb mass on energy cost and kinematics of walking and running. J. Sports Eng. Technol. 226, 123–133 (2012)

    Google Scholar 

  27. Barrett, R.S., Besier, T.F., Lloyd, D.G.: Individual muscle contributions to the swing phase of gait: An EMG-based forward dynamics modelling approach. Simulation Modelling Practice and Theory 15 (9), 1146–1155 (2007)

    Article  Google Scholar 

  28. Redl, C., Gfoehler, M., Pandy, M.G.: Sensitivity of muscle force estimates to variations in muscle-tendon properties. Human Movement Science 26(2), 306–319 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Dao, T.T., Christine Ho Ba Tho, M. (2015). Uncertainty Modeling and Propagation in Musculoskeletal Modeling. In: Nguyen, VH., Le, AC., Huynh, VN. (eds) Knowledge and Systems Engineering. Advances in Intelligent Systems and Computing, vol 326. Springer, Cham. https://doi.org/10.1007/978-3-319-11680-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11680-8_45

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11679-2

  • Online ISBN: 978-3-319-11680-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics