Re-Envisioning Data Description Using Peirce’s Pragmatics | SpringerLink
Skip to main content

Re-Envisioning Data Description Using Peirce’s Pragmatics

  • Conference paper
Geographic Information Science (GIScience 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8728))

Included in the following conference series:

Abstract

Given the growth in geographical data production, and the various mandates to make sharing of data a priority, there is a pressing need to facilitate the appropriate uptake and reuse of geographical data. However, describing the meaning and quality of data and thus finding data to fit a specific need remain as open problems, despite much research on these themes over many years. We have strong metadata standards for describing facts about data, and ontologies to describe semantic relationships among data, but these do not yet provide a viable basis on which to describe and share data reliably. We contend that one reason for this is the highly contextual and situated nature of geographic data, something that current models do not capture well — and yet they could. We show in this paper that a reconceptualization of geographical information in terms of Peirce’s Pragmatics (specifically firstness, secondness and thirdness) can provide the necessary modeling power for representing situations of data use and data production, and for recognizing that we do not all see and understand in the same way. This in turn provides additional dimensions by which intentions and purpose can be brought into the representation of geographical data. Doing so does not solve all problems related to sharing meaning, but it gives us more to work with. Practically speaking, enlarging the focus from data model descriptions to descriptions of the pragmatics of the data — community, task, and domain semantics — allows us to describe the how, who, and why of data. These pragmatics offer a mechanism to differentiate between the perceived meanings of data as seen by different users, specifically in our examples herein between producers and consumers. Formally, we propose a generative graphical model for geographic data production through pragmatic description spaces and a pragmatic data description relation. As a simple demonstration of viability, we also show how this model can be used to learn knowledge about the community, the tasks undertaken, and even domain categories, from text descriptions of data and use-cases that are currently available. We show that the knowledge we gain can be used to improve our ability to find fit-for-purpose data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adams, B., Gahegan, M.: Emerging data challenges for next-generation spatial data infrastructure. In: Winter, S., Rizos, C. (eds.) Research@Locate 2014, Canberra, Australia, April 7-9, pp. 118–129 (2014), http://ceur-ws.org

  2. Artz, D., Gil, Y.: A survey of trust in computer science and the semantic web. Web Semantics: Science, Services and Agents on the World Wide Web 5(2), 58–71 (2007)

    Article  Google Scholar 

  3. Berry, B.J.: Approaches to regional analysis: a synthesis. Annals of the Association of American Geographers 54(1), 2–11 (1964)

    Article  Google Scholar 

  4. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  5. Boisvert, E., Brodaric, B.: GroundWater Markup Language (GWML)-enabling groundwater data interoperability in spatial data infrastructures. Journal of Hydroinformatics 14(1), 93–107 (2012)

    Article  Google Scholar 

  6. Carmel, D., Zwerdling, N., Guy, I., Ofek-Koifman, S., Har’el, N., Ronen, I., Uziel, E., Yogev, S., Chernov, S.: Personalized social search based on the user’s social network. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, CIKM 2009, pp. 1227–1236. ACM, New York (2009)

    Google Scholar 

  7. Costello, M.J., Michener, W.K., Gahegan, M., Zhang, Z.Q., Bourne, P.E.: Biodiversity data should be published, cited, and peer reviewed. Trends in Ecology & Evolution 28(8), 454–461 (2013)

    Article  Google Scholar 

  8. Crompvoets, J., Bregt, A., Rajabifard, A., Williamson, I.: Assessing the worldwide developments of national spatial data clearinghouses. International Journal of Geographical Information Science 18(7), 665–689 (2004)

    Article  Google Scholar 

  9. Domingos, P., Pazzani, M.: On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning 29(2-3), 103–130 (1997)

    Article  MATH  Google Scholar 

  10. Egenhofer, M.: Toward the semantic geospatial web. In: GIS 2002: Proceedings of the 10th ACM International Symposium on Advances in Geographic Information Systems, pp. 1–4. ACM, New York (2002)

    Google Scholar 

  11. Egenhofer, M.J., Frank, A.: Object-oriented modeling for GIS. Journal of the Urban and Regional Information Systems Association 4(2), 3–19 (1992)

    Google Scholar 

  12. Fegraus, E.H., Andelman, S., Jones, M.B., Schildhauer, M.: Maximizing the value of ecological data with structured metadata: an introduction to ecological metadata language (EML) and principles for metadata creation. Bulletin of the Ecological Society of America 86(3), 158–168 (2005)

    Article  Google Scholar 

  13. Gahegan, M., Agrawal, R., Jaiswal, A., Luo, J., Soon, K.H.: A platform for visualizing and experimenting with measures of semantic similarity in ontologies and concept maps. Transactions in GIS 12(6), 713–732 (2008)

    Article  Google Scholar 

  14. Gahegan, M., Luo, J., Weaver, S.D., Pike, W., Banchuen, T.: Connecting GEON: Making sense of the myriad resources, researchers and concepts that comprise a geoscience cyberinfrastructure. Computers & Geosciences 35(4), 836–854 (2009)

    Article  Google Scholar 

  15. Gahegan, M., Pike, W.: A situated knowledge representation of geographical information. Transactions in GIS 10(5), 727–749 (2006)

    Article  Google Scholar 

  16. Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.: Sweetening ontologies with DOLCE. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 166–181. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  17. Goodchild, M.F.: Geographic data modeling. Computers and Geosciences 18(4), 401–408 (1992)

    Article  Google Scholar 

  18. Goodchild, M.F.: Data models and data quality: problems and prospects. In: Environmental Modeling with GIS, pp. 94–104. Oxford University Press (1993)

    Google Scholar 

  19. Grira, J., Bédard, Y., Roche, S.: Spatial data uncertainty in the VGI world: Going from consumer to producer. Geomatica 64(1), 61–72 (2010)

    Google Scholar 

  20. Guarino, N.: Formal Ontology and Information Systems. In: Guarino, N. (ed.) International Conference on Formal Ontology in Information Systems (FOIS 1998), pp. 3–15. IOS Press, Trento (1998)

    Google Scholar 

  21. Heuvelink, G.B., Burrough, P.A., Stein, A.: Propagation of errors in spatial modelling with GIS. International Journal of Geographical Information System 3(4), 303–322 (1989)

    Article  Google Scholar 

  22. Hobbie, J.E., Carpenter, S.R., Grimm, N.B., Gosz, J.R., Seastedt, T.R.: The US long term ecological research program. BioScience 53(1), 21–32 (2003)

    Article  Google Scholar 

  23. Janowicz, K., Raubal, M., Kuhn, W.: The semantics of similarity in geographic information retrieval. Journal of Spatial Information Science (2), 29–57 (2011)

    Google Scholar 

  24. Janowicz, K., Schade, S., Bröring, A., Keßler, C., Maué, P., Stasch, C.: Semantic enablement for spatial data infrastructures. Transactions in GIS 14(2), 111–129 (2010)

    Article  Google Scholar 

  25. Keim, D.A.: Designing pixel-oriented visualization techniques: Theory and applications. IEEE Transactions on Visualization and Computer Graphics 6(1), 59–78 (2000)

    Article  Google Scholar 

  26. Kuhn, W.: Ontologies in support of activities in geographical space. International Journal of Geographical Information Science 15(7), 613–631 (2001)

    Article  Google Scholar 

  27. Langran, G., Chrisman, N.R.: A framework for temporal geographic information. Cartographica: The International Journal for Geographic Information and Geovisualization 25(3), 1–14 (1988)

    Article  Google Scholar 

  28. MacEachren, A.M., Robinson, A., Hopper, S., Gardner, S., Murray, R., Gahegan, M., Hetzler, E.: Visualizing geospatial information uncertainty: What we know and what we need to know. Cartography and Geographic Information Science 32(3), 139–160 (2005)

    Article  Google Scholar 

  29. MacKay, D.J.C.: Information Theory, Inference, and Learning Algorithms, 7.2nd edn. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  30. Michener, W., Vieglais, D., Vision, T.J., Kunze, J., Cruse, P., Janée, G.: Dataone: Data observation network for earth - preserving data and enabling innovation in the biological and environmental sciences. D-Lib Magazine 17(1/2) (2011)

    Google Scholar 

  31. Pearl, J.: Causality: Models, reasoning and inference. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  32. Peirce, C.S.: The Collected Papers of Charles Sanders Peirce. Harvard University Press (1931)

    Google Scholar 

  33. Peuquet, D.J.: Representations of space and time. Guilford Press (2002)

    Google Scholar 

  34. Pike, W., Gahegan, M.: Beyond ontologies: Toward situated representations of scientific knowledge. International Journal of Human-Computer Studies 65(7), 674–688 (2007)

    Article  Google Scholar 

  35. Raskin, R.G., Pan, M.J.: Knowledge representation in the semantic web for Earth and environmental terminology (SWEET). Computers & Geosciences 31(9), 1119–1125 (2005)

    Article  Google Scholar 

  36. Raubal, M.: Formalizing conceptual spaces. In: Varzi, A.C., Vieu, L. (eds.) Formal Ontology in Information Systems, Proceedings of the Third International Conference (FOIS 2004), pp. 153–164. IOS Press (2004)

    Google Scholar 

  37. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice Hall (2010)

    Google Scholar 

  38. Saalfeld, A.: Conflation automated map compilation. International Journal of Geographical Information System 2(3), 217–228 (1988)

    Article  Google Scholar 

  39. Schwering, A.: Approaches to semantic similarity measurement for geo-spatial data: A survey. Transactions in GIS 12(1), 5–29 (2008)

    Article  Google Scholar 

  40. Sen, M., Duffy, T.: GeoSciML: development of a generic geoscience markup language. Computers & Geosciences 31(9), 1095–1103 (2005)

    Article  Google Scholar 

  41. Shi, W.: A generic statistical approach for modelling error of geometric features in GIS. International Journal of Geographical Information Science 12(2), 131–143 (1998)

    Article  Google Scholar 

  42. Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges. IEEE Transactions on Knowledge and Data Engineering 25(1), 158–176 (2013)

    Article  Google Scholar 

  43. Sinton, D.: The inherent structure of information as a constraint to analysis: Mapped thematic data as a case study. Harvard Papers on Geographic Information Systems 7, 1–17 (1978)

    Google Scholar 

  44. Sowa, J.F.: Syntax, semantics, and pragmatics of contexts. In: Ellis, G., Rich, W., Levinson, R., Sowa, J.F. (eds.) ICCS 1995. LNCS, vol. 954, pp. 1–15. Springer, Heidelberg (1995)

    Google Scholar 

  45. Worboys, M.F., Duckham, M.: GIS: a computing perspective. CRC Press (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Gahegan, M., Adams, B. (2014). Re-Envisioning Data Description Using Peirce’s Pragmatics. In: Duckham, M., Pebesma, E., Stewart, K., Frank, A.U. (eds) Geographic Information Science. GIScience 2014. Lecture Notes in Computer Science, vol 8728. Springer, Cham. https://doi.org/10.1007/978-3-319-11593-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11593-1_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11592-4

  • Online ISBN: 978-3-319-11593-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics