Abstract
Detecting user context with high accuracy using smartphone sensors is a difficult task. A key challenge is dealing with the impact of different smartphone positions on sensor values. Users carry their smartphones in different positions such as holding in their hand or keeping inside their pants or jacket pocket, and each of these smartphone positions affects various sensor values in different ways. This paper addresses the issue of poor accuracy in detecting user context due to varying smartphone positions. It describes the design and prototype development of a smartphone position discovery service that accurately detects a smartphone position, and then demonstrates that the accuracy of an existing context aware application is significantly enhanced when run in conjunction with this proposed smartphone position discovery service.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alanezi, K., Mishra, S.: Impact of smartphone position on sensor values and context discovery. Technical report, Department of Computer Science, University of Colorado (2013). http://ucblibraries.colorado.edu/repository
Albert, M., Kording, K., Herrmann, M., Jayaraman, A.: Fall classification by machine learning using mobile phones. PloS one 7(5), e36556 (2012)
Amini, N., Sarrafzadeh, M., Vahdatpour, A., Xu, W.: Accelerometer-based on-body sensor localization for health and medical monitoring applications. In: PerCom (2011)
Chen, G., Kotz, D., et al.: A survey of context-aware mobile computing research. Technical report, TR2000-381, Department of CS, Dartmouth College (2000)
Chon, Y., Talipov, E., Cha, H.: Autonomous management of everyday places for a personalized location provider. IEEE Trans. SMCC 42(4), 518–531 (2012)
Fujinami, K., Kouchi, S.: Recognizing a mobile phone’s storing position as a context of a device and a user. In: Zheng, K., Li, M., Jiang, H. (eds.) MobiQuitous 2012. LNICST, vol. 120, pp. 76–88. Springer, Heidelberg (2013)
Gellersen, H.W., Schmidt, A., Beigl, M.: Multi-sensor context-awareness in mobile devices and smart artifacts. Mob. Netw. Appl. 7(5), 341–351 (2002)
Harrison, C., Hudson, S.E.: Lightweight material detection for placement-aware mobile computing. In: UIST (2008)
Kunze, K.S., Lukowicz, P., Junker, H., Tröster, G.: Where am i: recognizing on-body positions of wearable sensors. In: Strang, T., Linnhoff-Popien, C. (eds.) LoCA 2005. LNCS, vol. 3479, pp. 264–275. Springer, Heidelberg (2005)
Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. ACM SIGKDD Explor. Newsl. 12(2), 74–82 (2011)
Marsan, R.J.: Weka for android. http://rjmarsan.com/research/wekaforandroid/
Miluzzo, E., Cornelius, C.T., Ramaswamy, A., Choudhury, T., Liu, Z., Campbell, A.T.: Darwin phones: the evolution of sensing and inference on mobile phones. In: MobiSys (2010)
Miluzzo, E., Papandrea, M., Lane, N.D., Lu, H., Campbell, A.T.: Pocket, bag, hand, etc.-automatically detecting phone context through discovery. In: PhoneSense (2010)
Musolesi, M., Piraccini, M., Fodor, K., Corradi, A., Campbell, A.T.: Supporting energy-efficient uploading strategies for continuous sensing applications on mobile phones. In: Floréen, P., Krüger, A., Spasojevic, M. (eds.) Pervasive 2010. LNCS, vol. 6030, pp. 355–372. Springer, Heidelberg (2010)
Shi, Y., Shi, Y., Liu, J.: A rotation based method for detecting on-body positions of mobile devices. In: UbiComp (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Alanezi, K., Mishra, S. (2014). Enhancing Context-Aware Applications Accuracy with Position Discovery. In: Stojmenovic, I., Cheng, Z., Guo, S. (eds) Mobile and Ubiquitous Systems: Computing, Networking, and Services. MobiQuitous 2013. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 131. Springer, Cham. https://doi.org/10.1007/978-3-319-11569-6_50
Download citation
DOI: https://doi.org/10.1007/978-3-319-11569-6_50
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11568-9
Online ISBN: 978-3-319-11569-6
eBook Packages: Computer ScienceComputer Science (R0)