Abstract
In this work, after revisiting the different notions of reductant arisen in the framework of multi-adjoint logic programming and akin frameworks, we introduce a new, more adequate, notion of reductant in the context of multi-adjoint logic programs. We study some of its properties and its relationships with other notions of reductants.
Partially supported by the Spanish MICINN projects TIN2012-39353-C04-01, TIN2012-39353-C04-04 and the Spanish Ministry of Economy and Competition under grant TIN2013-45732-C4-2-P.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baldwin, J.F., Martin, T.P., Pilsworth, B.W.: Fril- Fuzzy and Evidential Reasoning in Artificial Intelligence. John Wiley &; Sons, Inc. (1995)
Cao, T.H., Noi, N.V.: A framework for linguistic logic programming. International Journal of Intelligent Systems 25(6), 559–580 (2010)
Eklund, P., Galán, M.Á., Helgesson, R., Kortelainen, J., Moreno, G., Vázquez, C.: Towards categorical fuzzy logic programming. In: Masulli, F. (ed.) WILF 2013. LNCS (LNAI), vol. 8256, pp. 109–121. Springer, Heidelberg (2013)
Eklund, P., Klawonn, F.: Neural fuzzy logic programming. IEEE Transactions on Neural Networks 3(5), 815–818 (1992)
Guadarrama, S., Muñoz, S., Vaucheret, C.: Fuzzy prolog: A new approach using soft constraints propagation. Fuzzy Sets and Systems 144(1), 127–150 (2004)
Hájek, P.: Metamathematics of fuzzy logic, vol. 4. Springer (1998)
Ishizuka, M., Kanai, N.: Prolog-ELF Incorporating Fuzzy Logic. In: Joshi, A.K. (ed.) Proc. of the 9th International Joint Conference on Artificial Intelligence (IJCAI 1985), Los Angeles, CA, USA, pp. 701–703. Morgan Kaufmann (1985)
Julián, P., Moreno, G., Penabad, J.: On Fuzzy Unfolding. A Multi-adjoint Approach. Fuzzy Sets and Systems, Elsevier 154, 16–33 (2005)
Kifer, M., Subrahmanian, V.: Theory of generalized annotated logic programming and its applications. Journal of Logic Programming 12, 335–367 (1992)
Krajči, S., Lencses, R., Vojtáš, P.: A comparison of fuzzy and annotated logic programming. Fuzzy Sets and Systems 144(1), 173–192 (2004)
Kuhr, T., Vychodil, V.: Fuzzy logic programming reduced to reasoning with attribute implications. Fuzzy Sets and Systems (in press 2014)
Le, V.H., Liu, F., Tran, D.K.: Fuzzy linguistic logic programming and its applications. Theory and Practice of Logic Programming 9, 309–341 (2009)
Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Similarity-based unification: A multi-adjoint approach. Fuzzy Sets and Systems 146(1), 43–62 (2004)
Morcillo, P., Moreno, G.: A practical approach for ensuring completeness of multi-adjoint logic computations via general reductants. In: Lucio, G.M.P., Peña, R. (eds.) Proc. of IX Jornadas sobre Programación y Lenguajes, PROLE 2009, San Sebastián, Spain, September 8-11, pp. 355–363. Universidad del País Vasco (2009) ISBN 978-84-692-4600-9
Morcillo, P., Moreno, G.: Improving completeness in multi-adjoint logic computations via general reductants. In: Proc. of 2011 IEEE Symposium on Foundations of Computational Intelligence, Paris, France, April 11-15, pp. 138–145. IEEE (2011)
Morcillo, P., Moreno, G.: Simplifying general reductants with unfolding-based techniques. In: Arenas, P., Gulías, V., Nogueira, P. (eds.) Proc. of XI Jornadas sobre Programación y Lenguajes, PROLE 2011, A Coruña, Spain, September 5-7, pp. 154–168 (sección de trabajos en progreso). Universidade da Coruña (2011) ISBN 978-84-9749-487-8
Moreno, G., Pascual, V.: A hybrid programming scheme combining fuzzy-logic and functional-logic resources. Fuzzy Sets and Systems 160(10), 1402–1419 (2009), Special Issue: Fuzzy Sets in Interdisciplinary Perception and Intelligence
Pettorossi, A., Proietti, M.: Rules and Strategies for Transforming Functional and Logic Programs. ACM Computing Surveys 28(2), 360–414 (1996)
Vojtáš, P.: Fuzzy Logic Programming. Fuzzy Sets and Systems 124(1), 361–370 (2001)
Yasui, H., Hamada, Y., Mukaidono, M.: Fuzzy prolog based on Lukasiewicz implication and bounded product. In: Proc. of IEEE Symp on Fuzzy Systems FUZZ-IEEE, pp. 949–954 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Julián-Iranzo, P., Medina, J., Ojeda-Aciego, M. (2014). Revisiting Reductants in the Multi-adjoint Logic Programming Framework. In: Fermé, E., Leite, J. (eds) Logics in Artificial Intelligence. JELIA 2014. Lecture Notes in Computer Science(), vol 8761. Springer, Cham. https://doi.org/10.1007/978-3-319-11558-0_53
Download citation
DOI: https://doi.org/10.1007/978-3-319-11558-0_53
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11557-3
Online ISBN: 978-3-319-11558-0
eBook Packages: Computer ScienceComputer Science (R0)