Revisiting Reductants in the Multi-adjoint Logic Programming Framework | SpringerLink
Skip to main content

Revisiting Reductants in the Multi-adjoint Logic Programming Framework

  • Conference paper
Logics in Artificial Intelligence (JELIA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8761))

Included in the following conference series:

  • 1197 Accesses

Abstract

In this work, after revisiting the different notions of reductant arisen in the framework of multi-adjoint logic programming and akin frameworks, we introduce a new, more adequate, notion of reductant in the context of multi-adjoint logic programs. We study some of its properties and its relationships with other notions of reductants.

Partially supported by the Spanish MICINN projects TIN2012-39353-C04-01, TIN2012-39353-C04-04 and the Spanish Ministry of Economy and Competition under grant TIN2013-45732-C4-2-P.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baldwin, J.F., Martin, T.P., Pilsworth, B.W.: Fril- Fuzzy and Evidential Reasoning in Artificial Intelligence. John Wiley &; Sons, Inc. (1995)

    Google Scholar 

  2. Cao, T.H., Noi, N.V.: A framework for linguistic logic programming. International Journal of Intelligent Systems 25(6), 559–580 (2010)

    MATH  Google Scholar 

  3. Eklund, P., Galán, M.Á., Helgesson, R., Kortelainen, J., Moreno, G., Vázquez, C.: Towards categorical fuzzy logic programming. In: Masulli, F. (ed.) WILF 2013. LNCS (LNAI), vol. 8256, pp. 109–121. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Eklund, P., Klawonn, F.: Neural fuzzy logic programming. IEEE Transactions on Neural Networks 3(5), 815–818 (1992)

    Article  Google Scholar 

  5. Guadarrama, S., Muñoz, S., Vaucheret, C.: Fuzzy prolog: A new approach using soft constraints propagation. Fuzzy Sets and Systems 144(1), 127–150 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hájek, P.: Metamathematics of fuzzy logic, vol. 4. Springer (1998)

    Google Scholar 

  7. Ishizuka, M., Kanai, N.: Prolog-ELF Incorporating Fuzzy Logic. In: Joshi, A.K. (ed.) Proc. of the 9th International Joint Conference on Artificial Intelligence (IJCAI 1985), Los Angeles, CA, USA, pp. 701–703. Morgan Kaufmann (1985)

    Google Scholar 

  8. Julián, P., Moreno, G., Penabad, J.: On Fuzzy Unfolding. A Multi-adjoint Approach. Fuzzy Sets and Systems, Elsevier 154, 16–33 (2005)

    Article  MATH  Google Scholar 

  9. Kifer, M., Subrahmanian, V.: Theory of generalized annotated logic programming and its applications. Journal of Logic Programming 12, 335–367 (1992)

    Article  MathSciNet  Google Scholar 

  10. Krajči, S., Lencses, R., Vojtáš, P.: A comparison of fuzzy and annotated logic programming. Fuzzy Sets and Systems 144(1), 173–192 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kuhr, T., Vychodil, V.: Fuzzy logic programming reduced to reasoning with attribute implications. Fuzzy Sets and Systems (in press 2014)

    Google Scholar 

  12. Le, V.H., Liu, F., Tran, D.K.: Fuzzy linguistic logic programming and its applications. Theory and Practice of Logic Programming 9, 309–341 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Similarity-based unification: A multi-adjoint approach. Fuzzy Sets and Systems 146(1), 43–62 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Morcillo, P., Moreno, G.: A practical approach for ensuring completeness of multi-adjoint logic computations via general reductants. In: Lucio, G.M.P., Peña, R. (eds.) Proc. of IX Jornadas sobre Programación y Lenguajes, PROLE 2009, San Sebastián, Spain, September 8-11, pp. 355–363. Universidad del País Vasco (2009) ISBN 978-84-692-4600-9

    Google Scholar 

  15. Morcillo, P., Moreno, G.: Improving completeness in multi-adjoint logic computations via general reductants. In: Proc. of 2011 IEEE Symposium on Foundations of Computational Intelligence, Paris, France, April 11-15, pp. 138–145. IEEE (2011)

    Google Scholar 

  16. Morcillo, P., Moreno, G.: Simplifying general reductants with unfolding-based techniques. In: Arenas, P., Gulías, V., Nogueira, P. (eds.) Proc. of XI Jornadas sobre Programación y Lenguajes, PROLE 2011, A Coruña, Spain, September 5-7, pp. 154–168 (sección de trabajos en progreso). Universidade da Coruña (2011) ISBN 978-84-9749-487-8

    Google Scholar 

  17. Moreno, G., Pascual, V.: A hybrid programming scheme combining fuzzy-logic and functional-logic resources. Fuzzy Sets and Systems 160(10), 1402–1419 (2009), Special Issue: Fuzzy Sets in Interdisciplinary Perception and Intelligence

    Google Scholar 

  18. Pettorossi, A., Proietti, M.: Rules and Strategies for Transforming Functional and Logic Programs. ACM Computing Surveys 28(2), 360–414 (1996)

    Article  Google Scholar 

  19. Vojtáš, P.: Fuzzy Logic Programming. Fuzzy Sets and Systems 124(1), 361–370 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yasui, H., Hamada, Y., Mukaidono, M.: Fuzzy prolog based on Lukasiewicz implication and bounded product. In: Proc. of IEEE Symp on Fuzzy Systems FUZZ-IEEE, pp. 949–954 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Julián-Iranzo, P., Medina, J., Ojeda-Aciego, M. (2014). Revisiting Reductants in the Multi-adjoint Logic Programming Framework. In: Fermé, E., Leite, J. (eds) Logics in Artificial Intelligence. JELIA 2014. Lecture Notes in Computer Science(), vol 8761. Springer, Cham. https://doi.org/10.1007/978-3-319-11558-0_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11558-0_53

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11557-3

  • Online ISBN: 978-3-319-11558-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics