Abstract
Backdoor variables offer a generic notion for providing insights to the surprising success of constraint satisfaction solvers in solving remarkably complex real-world instances of combinatorial problems. We study backdoors in the context of answer set programming (ASP), and focus on studying the relative size of backdoors in terms of different state-of-the-art answer set solving algorithms. We show separations of ASP solver families in terms of the smallest existing backdoor sets for the solvers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alviano, M., Dodaro, C., Faber, W., Leone, N., Ricca, F.: WASP: A native ASP solver based on constraint learning. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS (LNAI), vol. 8148, pp. 54–66. Springer, Heidelberg (2013)
Anger, C., Gebser, M., Linke, T., Neumann, A., Schaub, T.: The nomore++ system. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 422–426. Springer, Heidelberg (2005)
Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)
Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011)
Clark, K.: Negation as failure. In: Readings in Nonmonotonic Reasoning, pp. 311–325. Morgan Kaufmann Publishers (1987)
Darwiche, A., Pipatsrisawat, K.: Complete algorithms. In: Biere et al [3], pp. 99–130
Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Communications of the ACM 5(7), 394–397 (1962)
Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7(3), 201–215 (1960)
Dilkina, B.N., Gomes, C.P., Malitsky, Y., Sabharwal, A., Sellmann, M.: Backdoors to combinatorial optimization: Feasibility and optimality. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 56–70. Springer, Heidelberg (2009)
Dilkina, B.N., Gomes, C.P., Sabharwal, A.: Tradeoffs in the complexity of backdoors to satisfiability: Dynamic sub-solvers and learning during search. Ann. Math. Artif. Intell. 70(4), 399–431 (2014)
Erdem, E., Lifschitz, V.: Tight logic programs. Theory and Practice of Logic Programming 3(4-5), 499–518 (2003)
Fages, F.: Consistency of Clark’s completion and existence of stable models. Journal of Methods of Logic in Computer Science 1, 51–60 (1994)
Fichte, J.K., Szeider, S.: Backdoors to normality for disjunctive logic programs. In: Proc. AAAI. AAAI Press (2013)
Gebser, M., Schaub, T.: Characterizing ASP inferences by unit propagation. In: ICLP Workshop on Search and Logic: Answer Set Programming and SAT, Seattle, pp. 41–56 (August 16, 2006)
Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From theory to practice. Artif. Intell. 187, 52–89 (2012)
Gebser, M., Schaub, T.: Tableau calculi for logic programs under answer set semantics. ACM Trans. Comput. Log. 14(2), 15 (2013)
Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proc. ICLP/SLP 1988, pp. 1070–1080. MIT Press (1988)
Giunchiglia, E., Leone, N., Maratea, M.: On the relation among answer set solvers. Ann. Math. Artif. Intell. 53(1-4), 169–204 (2008)
Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional satisfiability. Journal of Automated Reasoning 36(4), 345–377 (2006)
Järvisalo, M., Oikarinen, E.: Extended ASP tableaux and rule redundancy in normal logic programs. Theory and Practice of Logic Programming 8(5-6), 691–716 (2008)
Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Transactions on Computational Logic 7(3), 499–562 (2006)
Lierler, Y.: Abstract answer set solvers. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 377–391. Springer, Heidelberg (2008)
Lierler, Y.: Abstract answer set solvers with backjumping and learning. TPLP 11(2-3), 135–169 (2011)
Lifschitz, V., Razborov, A.: Why are there so many loop formulas? ACM Transactions on Computational Logic 7(2), 261–268 (2006)
Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers. Artificial Intelligence 157(1–2), 115–137 (2004)
Lin, Z., Zhang, Y., Hernandez, H.: Fast SAT-based answer set solver. In: Proc. AAAI, pp. 92–97. AAAI Press (2006)
Marques-Silva, J.P., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In: Biere et al [3], pp. 131–153
Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4), 241–273 (1999)
Samer, M., Szeider, S.: Backdoor sets of quantified boolean formulas. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 230–243. Springer, Heidelberg (2007)
Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artificial Intelligence 138(1–2), 181–234 (2002)
Ward, J., Schlipf, J.: Answer set programming with clause learning. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 302–313. Springer, Heidelberg (2003)
Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity. In: Proc. IJCAI, pp. 1173–1178. Morgan Kaufmann (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Oikarinen, E., Järvisalo, M. (2014). Answer Set Solver Backdoors. In: Fermé, E., Leite, J. (eds) Logics in Artificial Intelligence. JELIA 2014. Lecture Notes in Computer Science(), vol 8761. Springer, Cham. https://doi.org/10.1007/978-3-319-11558-0_51
Download citation
DOI: https://doi.org/10.1007/978-3-319-11558-0_51
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11557-3
Online ISBN: 978-3-319-11558-0
eBook Packages: Computer ScienceComputer Science (R0)