A Pairwise Class Interaction Framework for Multilabel Classification | SpringerLink
Skip to main content

A Pairwise Class Interaction Framework for Multilabel Classification

  • Conference paper
Probabilistic Graphical Models (PGM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8754))

Included in the following conference series:

  • 2160 Accesses

Abstract

We present a general framework for multidimensional classification that captures the pairwise interactions between class variables. The pairwise class interactions are encoded using a collection of base classifiers (Phase 1), for which the class predictions are combined in a Markov random field that is subsequently used for multi-label inference (Phase 2); thus, the framework can be positioned between ensemble methods and label transformation-based approaches. Our proposal leads to a general framework supporting a wide range of base classifiers in the first phase as well as different inference methods in the second phase. We describe the basic framework and its main properties, including detailed experimental results based on a range of publicly available databases. By comparing the performance with other multilabel classifiers we see that the proposed classifier either outperforms or is competitive with the tested straw-men methods. We also analyse the scalability of our approach and discuss potential drawbacks and directions for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Antonucci, A., Corani, G., Mauá, D., Gabaglio, S.: An ensemble of Bayesian networks for multilabel classification. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, IJCAI 2013, pp. 1220–1225. AAAI Press (2013)

    Google Scholar 

  2. Bielza, C., Li, G., Larrañaga, P.: Multi-dimensional classification with Bayesian networks. International Journal of Approximate Reasoning 52(6), 705–727 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borchani, H., Bielza, C., Martínez-Martín, P., Larrañaga, P.: Markov blanket-based approach for learning multi-dimensional Bayesian network classifiers: An application to predict the european quality of life-5 dimensions (EQ-5D) from the 39-item Parkinson’s disease questionnaire (PDQ-39). Journal of Biomedical Informatics 45(6), 1175–1184 (2012)

    Article  Google Scholar 

  4. Borchani, H., Bielza, C., Toro, C., Larrañaga, P.: Predicting human immunodeficiency virus inhibitors using multi-dimensional bayesian network classifiers. Artificial Intelligence in Medicine 57(3), 219–229 (2013)

    Article  Google Scholar 

  5. Chow, C.K., Liu, C.: Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory 14, 462–467 (1968)

    Article  MATH  Google Scholar 

  6. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters. In: Proceedings of the 6th Conference on Symposium on Operating Systems Design & Implementation, vol. 6, pp. 137–150. USENIX Association (2004)

    Google Scholar 

  7. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research 7, 1–30 (2006)

    MATH  Google Scholar 

  8. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued attributes for classification learning. In: Proceedings of the 13th International Joint Conference on Artificial Intelligence (IJCAI 1993), pp. 1022–1029 (1993)

    Google Scholar 

  9. Friedman, M.: A comparison of alternative tests of significance for the problem of m rankings. The Annals of Mathematical Statistics, 86–92 (1940)

    Google Scholar 

  10. van der Gaag, L.C., de Waal, P.R.: Multi-dimensional Bayesian network classifiers. In: 3rd European Workshop on Probabilistic Graphical Models (PGM 2006), pp. 107–114 (2006)

    Google Scholar 

  11. Garcıa, S., Herrera, F.: An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons. Journal of Machine Learning Research 9(2677-2694), 66 (2008)

    Google Scholar 

  12. Guo, Y., Gu, S.: Multi-label classification using conditional dependency networks. In: IJCAI Proceedings-International Joint Conference on Artificial Intelligence, IJCAI 2011, vol. 22, pp. 1300–1305. AAAI Press (2011)

    Google Scholar 

  13. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. ACM SIGKDD Explorations Newsletter 11(1), 10–18 (2009)

    Article  Google Scholar 

  14. Holm, S.: A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 65–70 (1979)

    Google Scholar 

  15. Hüllermeier, E., Fürnkranz, J., Cheng, W., Brinker, K.: Label ranking by learning pairwise preferences. Artificial Intelligence 172(16-17), 1897–1916 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jensen, F.V., Nielsen, T.D.: Bayesian Networks and Decision Graphs, 2nd edn. Springer Publishing Company, Incorporated (2007)

    Google Scholar 

  17. Murphy, K.P., Weiss, Y., Jordan, M.I.: Loopy belief propagation for approximate inference: An empirical study. In: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence (UAI 1999), pp. 467–475. Morgan Kaufmann (1999)

    Google Scholar 

  18. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Machine Learning 85(3), 333–359 (2011)

    Article  MathSciNet  Google Scholar 

  19. Rodríguez, J.D., Lozano, J.A.: Multi-objective learning of multi-dimensional Bayesian classifiers. In: 8th International Conference on Hybrid Intelligent Systems (HIS 2008), pp. 501–506 (2008)

    Google Scholar 

  20. Sucar, L.E., Bielza, C., Morales, E.F., Hernandez-Leal, P., Zaragoza, J.H., Larrañaga, P.: Multi-label classification with bayesian network-based chain classifiers. Pattern Recognition Letters 41, 14–22 (2014)

    Article  Google Scholar 

  21. Tsoumakas, G., Katakis, I.: Multi-label classification: An overview. International Journal of Data Warehousing and Mining 3(3), 1–13 (2007)

    Article  Google Scholar 

  22. Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Data Mining and Knowledge Discovery Handbook, pp. 667–685. Springer (2010)

    Google Scholar 

  23. Tsoumakas, G., Katakis, I., Vlahavas, I.P.: Random k-labelsets for multilabel classification. IEEE Transactions on Knowledge and Data Engineering 23(7), 1079–1089 (2011)

    Article  Google Scholar 

  24. de Waal, P.R., van der Gaag, L.C.: Inference and learning in multi-dimensional Bayesian network classifiers. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724, pp. 501–511. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  25. Webb, G.I., Boughton, J.R., Wang, Z.: Not so naive Bayes: aggregating one-dependence estimators. Machine Learning 58(1), 5–24 (2005)

    Article  MATH  Google Scholar 

  26. Zaragoza, J.C., Sucar, L.E., Morales, E.F.: A two-step method to learn multidimensional bayesian network classifiers based on mutual information measures. In: 24th International Florida Artificial Intelligence Research Society Conference, FLAIRS 2011 (2011)

    Google Scholar 

  27. Zaragoza, J.H., Sucar, L.E., Morales, E.F., Bielza, C., Larrañaga, P.: Bayesian chain classifiers for multidimensional classification. In: 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011), pp. 2192–2197. AAAI Press (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Arias, J., Gámez, J.A., Nielsen, T.D., Puerta, J.M. (2014). A Pairwise Class Interaction Framework for Multilabel Classification. In: van der Gaag, L.C., Feelders, A.J. (eds) Probabilistic Graphical Models. PGM 2014. Lecture Notes in Computer Science(), vol 8754. Springer, Cham. https://doi.org/10.1007/978-3-319-11433-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11433-0_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11432-3

  • Online ISBN: 978-3-319-11433-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics