Compression of Synthetic-Aperture Radar Images | SpringerLink
Skip to main content

Compression of Synthetic-Aperture Radar Images

  • Conference paper
Computer Vision and Graphics (ICCVG 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8671))

Included in the following conference series:

  • 2660 Accesses

Abstract

In this paper the problem of the synthetic-aperture radar images compression is considered. The algorithm of canonical coherent scatterers identification, proposed in [1,2], based on the analysis of polarimetric signatures, is the starting point of the studies. The question whether the significant dimension reduction of the SAR image matrix preserves the information encoded in the SAR picture or not, is the topic of the paper. It turns out that the compression, by using the Kohonen neural network, allows us to reduce the dimension of the data from 16200-component vector to 100-component vector without losing information. The studies are led in the context of polarimetric data that encode full information about the scatterer. However, there are essential problems with such data processing. Therefore the topic is crucial in the context of the SAR images analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Porzycka, S., Strzelczyk, J., Bielecka, M., Lesniak, A.: Preliminary pattern recognition in polarimetric signatures. In: IEEE International Geoscience and Remote Sensing Symposium: Remote Sensing for a Dynamic Earth, pp. 22–27 (2012)

    Google Scholar 

  2. Bielecka, M., Porzycka-Strzelczyk, S., Strzelczyk, J.: SAR images analysis based on polarimetric signatures. Applied Soft Computing (accepted 2014)

    Google Scholar 

  3. Bielecka, M., Skomorowski, M., Bielecki, A.: Fuzzy syntactic approach to pattern recognition and scene analysis. In: Proceedings of the 4th International Conference on Informatics in Control, Automatics and Robotics, ICINCO 2007, ICSO Intelligent Control Systems and Optimization, Robotics and Automation, vol. 1, pp. 29–35 (2007)

    Google Scholar 

  4. Bielecki, A., Buratowski, T., Śmigielski, P.: Syntactic algorithm of two-dimensional scene analysis for unmanned flying vehicles. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2012. LNCS, vol. 7594, pp. 304–312. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Bielecki, A., Buratowski, T., Śmigielski, P.: Recognition of two-dimensional representation of urban environment for autonomous flying agents. Expert Systems with Applications 40, 3623–3633 (2013)

    Article  Google Scholar 

  6. Farmio-Famil, L., Reigber, A., Pottier, E., Boerner, W.M.: Scene characterization using subaperture polarimetric SAR data. IEEE Transactions on Geoscience and Remote Sensing 41, 2264–2276 (2013)

    Article  Google Scholar 

  7. Ferretti, A., Prati, C., Rocca, F.: Permanent scatterers in SAR interferometry. IEEE Transaction on Geoscience and Remote Sensing 39, 8–20 (2001)

    Article  Google Scholar 

  8. Fodor, I.K.: A Survey of Dimension Reduction Techniques. Lawrence Livermore National Laboratory (2002)

    Google Scholar 

  9. Kaski, S.: Data exploration using self-organizing maps. Acta Polytechnica Scandinavica, Mathematics, Computing and Management in Engineering Series 82 (1997)

    Google Scholar 

  10. Kohonen, T.: Adaptive, associative and self-organizing functions in neural computing. Applied Optics 26, 4910–4918 (1997)

    Article  Google Scholar 

  11. Lech, P., Okarma, K.: Optimization of the fast image Binarization method based on the Monte Carlo approach. Electronics and Electrical Engineering 20, 63–66 (2014)

    Google Scholar 

  12. Lee, J.S., Pottier, E.: Polarimetric Radar Imaging. From Basic to Application. CRC Press, Taylor and Francis Group (2009)

    Google Scholar 

  13. Lee, J.S., Grunes, M.R., Ainsworth, T., Du, L.J., Schuler, D., Cloude, S.R.: Unsupervised classification using polarimetric decomposition and the complex Wishart classifier. IEEE Transaction on Geoscience and Remote Sensing 37, 2249–2257 (1999)

    Article  Google Scholar 

  14. Metni, M., Hamel, T.: A UAV for bridge inspection: Visual servoing control law with orientation limits. Automation in Construction 17, 3–10 (2007)

    Article  Google Scholar 

  15. Pottier, E., Lee, J.S.: Unsupervised classification scheme of POLSAR images based on the complex Wishart distribution and the H/A/alpha-Polarimetric decomposition theorem. In: Proc. of the 3rd EUSAR 2000 Conference (2000)

    Google Scholar 

  16. Sakarya, F.A., Emek, S.: SAR image compression. In: Proceedings of the 13th Asilomar Conference on Signals, Systems and Computers, vol. 2, pp. 858–862 (1996)

    Google Scholar 

  17. Schneider, R.Z., Papathanassiou, K., Hajnsek, I., Moreira, A.: Polarimetric interferometry over urban areas: infromation extraction using coherent scatterers. In: Proceedings of Geoscience and Remote Sensing Symposium (IGARSS 2005), Seoul, Korea, pp. 25–29 (2005)

    Google Scholar 

  18. Skingley, J., Rye, A.J.: The Hough transform applied to SAR images for thin line detection. Pattern Recognition Letters 6, 61–67 (1987)

    Article  Google Scholar 

  19. Strzelczyk, J., Porzycka-Strzelczyk, S.: Identification of coherent scatterers in SAR images based on the analysis of polarimetric signatures. IEEE Geoscience and Remote Sensing Letters 11, 783–787 (2013)

    Article  Google Scholar 

  20. Tadeusiewicz, R.: Neural Networks. Academic Press, Warsaw (1993)

    Google Scholar 

  21. Touzi, R., Charbonneau, F.: Characterization of scatterer symmetric scattering using polarimetric SARs. IEEE Transactions on Geoscience and Remote Sensing 40, 2507–2516 (2002)

    Article  Google Scholar 

  22. Tan, C.P., Lim, K.S., Ewe, H.T.: Image processing in polarimetric SAR images using a hybrid entropy decomposition and maximum likelihood (EDML). In: Proceedings of International Symposium on Image and Signal Processing and Analysis (ISPA)

    Google Scholar 

  23. Wu, Y., Ji, K., Yu, W., Su, Y.: Region-based classification of polarimetric SAR images using Wishart MRF. IEEE Geoscience and Remote Sensing Letters 5, 668–672 (2008)

    Article  Google Scholar 

  24. van Zyl, J.J.: Unsupervised classification of scattering mechanisms using radar polarimetry data. IEEE Transactions on Geoscience Remote Sensing 27, 36–45 (1989)

    Google Scholar 

  25. Ye, Z., Lu, C.-C.: Wavelet-based unsupervised SAR image segmentation using hidden markov tree models. In: Proceedings of the 16th International Conference on Pattern Recognition, ICPR 2002, vol. 2, p. 20729 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bielecka, M., Bielecki, A., Wojdanowski, W. (2014). Compression of Synthetic-Aperture Radar Images. In: Chmielewski, L.J., Kozera, R., Shin, BS., Wojciechowski, K. (eds) Computer Vision and Graphics. ICCVG 2014. Lecture Notes in Computer Science, vol 8671. Springer, Cham. https://doi.org/10.1007/978-3-319-11331-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11331-9_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11330-2

  • Online ISBN: 978-3-319-11331-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics