Abstract
In this paper the problem of the synthetic-aperture radar images compression is considered. The algorithm of canonical coherent scatterers identification, proposed in [1,2], based on the analysis of polarimetric signatures, is the starting point of the studies. The question whether the significant dimension reduction of the SAR image matrix preserves the information encoded in the SAR picture or not, is the topic of the paper. It turns out that the compression, by using the Kohonen neural network, allows us to reduce the dimension of the data from 16200-component vector to 100-component vector without losing information. The studies are led in the context of polarimetric data that encode full information about the scatterer. However, there are essential problems with such data processing. Therefore the topic is crucial in the context of the SAR images analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Porzycka, S., Strzelczyk, J., Bielecka, M., Lesniak, A.: Preliminary pattern recognition in polarimetric signatures. In: IEEE International Geoscience and Remote Sensing Symposium: Remote Sensing for a Dynamic Earth, pp. 22–27 (2012)
Bielecka, M., Porzycka-Strzelczyk, S., Strzelczyk, J.: SAR images analysis based on polarimetric signatures. Applied Soft Computing (accepted 2014)
Bielecka, M., Skomorowski, M., Bielecki, A.: Fuzzy syntactic approach to pattern recognition and scene analysis. In: Proceedings of the 4th International Conference on Informatics in Control, Automatics and Robotics, ICINCO 2007, ICSO Intelligent Control Systems and Optimization, Robotics and Automation, vol. 1, pp. 29–35 (2007)
Bielecki, A., Buratowski, T., Śmigielski, P.: Syntactic algorithm of two-dimensional scene analysis for unmanned flying vehicles. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2012. LNCS, vol. 7594, pp. 304–312. Springer, Heidelberg (2012)
Bielecki, A., Buratowski, T., Śmigielski, P.: Recognition of two-dimensional representation of urban environment for autonomous flying agents. Expert Systems with Applications 40, 3623–3633 (2013)
Farmio-Famil, L., Reigber, A., Pottier, E., Boerner, W.M.: Scene characterization using subaperture polarimetric SAR data. IEEE Transactions on Geoscience and Remote Sensing 41, 2264–2276 (2013)
Ferretti, A., Prati, C., Rocca, F.: Permanent scatterers in SAR interferometry. IEEE Transaction on Geoscience and Remote Sensing 39, 8–20 (2001)
Fodor, I.K.: A Survey of Dimension Reduction Techniques. Lawrence Livermore National Laboratory (2002)
Kaski, S.: Data exploration using self-organizing maps. Acta Polytechnica Scandinavica, Mathematics, Computing and Management in Engineering Series 82 (1997)
Kohonen, T.: Adaptive, associative and self-organizing functions in neural computing. Applied Optics 26, 4910–4918 (1997)
Lech, P., Okarma, K.: Optimization of the fast image Binarization method based on the Monte Carlo approach. Electronics and Electrical Engineering 20, 63–66 (2014)
Lee, J.S., Pottier, E.: Polarimetric Radar Imaging. From Basic to Application. CRC Press, Taylor and Francis Group (2009)
Lee, J.S., Grunes, M.R., Ainsworth, T., Du, L.J., Schuler, D., Cloude, S.R.: Unsupervised classification using polarimetric decomposition and the complex Wishart classifier. IEEE Transaction on Geoscience and Remote Sensing 37, 2249–2257 (1999)
Metni, M., Hamel, T.: A UAV for bridge inspection: Visual servoing control law with orientation limits. Automation in Construction 17, 3–10 (2007)
Pottier, E., Lee, J.S.: Unsupervised classification scheme of POLSAR images based on the complex Wishart distribution and the H/A/alpha-Polarimetric decomposition theorem. In: Proc. of the 3rd EUSAR 2000 Conference (2000)
Sakarya, F.A., Emek, S.: SAR image compression. In: Proceedings of the 13th Asilomar Conference on Signals, Systems and Computers, vol. 2, pp. 858–862 (1996)
Schneider, R.Z., Papathanassiou, K., Hajnsek, I., Moreira, A.: Polarimetric interferometry over urban areas: infromation extraction using coherent scatterers. In: Proceedings of Geoscience and Remote Sensing Symposium (IGARSS 2005), Seoul, Korea, pp. 25–29 (2005)
Skingley, J., Rye, A.J.: The Hough transform applied to SAR images for thin line detection. Pattern Recognition Letters 6, 61–67 (1987)
Strzelczyk, J., Porzycka-Strzelczyk, S.: Identification of coherent scatterers in SAR images based on the analysis of polarimetric signatures. IEEE Geoscience and Remote Sensing Letters 11, 783–787 (2013)
Tadeusiewicz, R.: Neural Networks. Academic Press, Warsaw (1993)
Touzi, R., Charbonneau, F.: Characterization of scatterer symmetric scattering using polarimetric SARs. IEEE Transactions on Geoscience and Remote Sensing 40, 2507–2516 (2002)
Tan, C.P., Lim, K.S., Ewe, H.T.: Image processing in polarimetric SAR images using a hybrid entropy decomposition and maximum likelihood (EDML). In: Proceedings of International Symposium on Image and Signal Processing and Analysis (ISPA)
Wu, Y., Ji, K., Yu, W., Su, Y.: Region-based classification of polarimetric SAR images using Wishart MRF. IEEE Geoscience and Remote Sensing Letters 5, 668–672 (2008)
van Zyl, J.J.: Unsupervised classification of scattering mechanisms using radar polarimetry data. IEEE Transactions on Geoscience Remote Sensing 27, 36–45 (1989)
Ye, Z., Lu, C.-C.: Wavelet-based unsupervised SAR image segmentation using hidden markov tree models. In: Proceedings of the 16th International Conference on Pattern Recognition, ICPR 2002, vol. 2, p. 20729 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Bielecka, M., Bielecki, A., Wojdanowski, W. (2014). Compression of Synthetic-Aperture Radar Images. In: Chmielewski, L.J., Kozera, R., Shin, BS., Wojciechowski, K. (eds) Computer Vision and Graphics. ICCVG 2014. Lecture Notes in Computer Science, vol 8671. Springer, Cham. https://doi.org/10.1007/978-3-319-11331-9_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-11331-9_12
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11330-2
Online ISBN: 978-3-319-11331-9
eBook Packages: Computer ScienceComputer Science (R0)