Program Obfuscation via Multilinear Maps | SpringerLink
Skip to main content

Program Obfuscation via Multilinear Maps

  • Conference paper
Security and Cryptography for Networks (SCN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8642))

Included in the following conference series:

Abstract

Recent proposals for plausible candidate constructions of multilinear maps and obfuscation have radically transformed what we imagined to be possible in cryptography. For over a decade cryptographers had been very skeptical about the existence of such objects. In this article, we provide a very brief introduction to these results and some of their interesting consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfuscation and applications. Cryptology ePrint Archive, Report 2013/689 (2013), http://eprint.iacr.org/2013/689

  2. Boyle, E., Chung, K.-M., Pass, R.: On Extractability Obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  3. Beimel, A.: Secret-sharing schemes: A survey. In: Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 11–46. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (Im)possibility of Obfuscating Programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting Obfuscation against Algebraic Attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  6. Brakerski, Z., Rothblum, G.N.: Virtual Black-Box Obfuscation for All Circuits via Generic Graded Encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 1–25. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  7. Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. Cryptology ePrint Archive, Report 2002/080 (2002), http://eprint.iacr.org/2002/080

  8. Boneh, D., Sahai, A., Waters, B.: Functional Encryption: Definitions and Challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and more from indistinguishability obfuscation. Cryptology ePrint Archive, Report 2013/642 (2013), http://eprint.iacr.org/2013/642

  10. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical Multilinear Maps over the Integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory 22(6), 644–654 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gentry, C.: Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher. In: 41st ACM STOC, pp. 169–178. ACM Press (May/June 2009)

    Google Scholar 

  13. Goldwasser, S., Dov Gordon, S., Goyal, V., Jain, A., Katz, J., Liu, F.-H., Sahai, A., Shi, E., Zhou, H.-S.: Multi-input Functional Encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  14. Garg, S., Gentry, C., Halevi, S.: Candidate Multilinear Maps from Ideal Lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press (October 2013)

    Google Scholar 

  16. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-Round Secure MPC from Indistinguishability Obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  17. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum. In: 45th ACM STOC. ACM Press, pp. 467–476 (June 2013)

    Google Scholar 

  18. Goyal, V., Jain, A., Koppula, V., Sahai, A.: Functional encryption for randomized functionalities. Cryptology ePrint Archive, Report 2013/729 (2013), http://eprint.iacr.org/2013/729

  19. Goldwasser, S., Rothblum, G.N.: On Best-Possible Obfuscation. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Hada, S.: Zero-knowledge and code obfuscation. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 443–457. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  21. Joux, A.: A one round protocol for tripartite Diffie-Hellman. Journal of Cryptology 17(4), 263–276 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive, Report 2010/556 (2010), http://eprint.iacr.org/2010/556

  23. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signature and public-key cryptosystems. Communications of the Association for Computing Machinery 21(2), 120–126 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  24. Rudich, S.: Unpublished (1989)

    Google Scholar 

  25. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 475–484. ACM Press (May/June 2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Garg, S. (2014). Program Obfuscation via Multilinear Maps. In: Abdalla, M., De Prisco, R. (eds) Security and Cryptography for Networks. SCN 2014. Lecture Notes in Computer Science, vol 8642. Springer, Cham. https://doi.org/10.1007/978-3-319-10879-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10879-7_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10878-0

  • Online ISBN: 978-3-319-10879-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics