Accurate Computations for Some Classes of Matrices | SpringerLink
Skip to main content

Accurate Computations for Some Classes of Matrices

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications - ENUMATH 2013

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 103))

  • 3299 Accesses

Abstract

A square matrix is called a P-matrix if all its principal minors are positive. Subclasses of P-matrices with many applications are the nonsingular totally positive matrices and the nonsingular M-matrices. For diagonally dominant M-matrices and some subclasses of nonsingular totally nonnegative matrices, accurate methods for computing their singular values, eigenvalues or inverses have been obtained, assuming that adequate natural parameters are provided. The adequate parameters for diagonally dominant M-matrices are the row sums and the off-diagonal entries, and for nonsingular totally nonnegative matrices are the entries of their bidiagonal factorization. In this paper we survey some recent extensions of these methods to other related classes of matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A.S. Alfa, J. Xue, Q. Ye, Entrywise perturbation theory for diagonally dominant M-matrices with application. Numer. Math. 90, 401–414 (1999)

    Article  MathSciNet  Google Scholar 

  2. A.S. Alfa, J. Xue, Q. Ye, Accurate computation of the smallest eigenvalue of a diagonally dominant M-matrix. Math. Comput. 71, 217–236 (2001)

    Article  MathSciNet  Google Scholar 

  3. P. Alonso, J. Delgado, R. Gallego, J.M. Peña, Conditioning and accurate computations with Pascal matrices. J. Comput. Appl. Math. 252, 21–26 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Barreras, J.M. Peña, Accurate and efficient LDU decompositions of diagonally dominant M-matrices. Electron. J. Linear Algebra 24, 153–167 (2012)

    MATH  Google Scholar 

  5. A. Barreras, J.M. Peña, Accurate computations of matrices with bidiagonal decomposition using methods for totally positive matrices. Numer. Linear Algebra Appl. 20, 413–424 (2013)

    Article  MathSciNet  Google Scholar 

  6. A. Barreras, J.M. Peña, Accurate and efficient LDU decomposition of almost diagonally dominant Z–matrices. BIT 54, 343–356 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Delgado, J.M. Peña, Accurate computations with collocation matrices of rational bases. Appl. Math. Comput. 219, 4354–4364 (2013)

    Article  MathSciNet  Google Scholar 

  8. J. Demmel, M. Gu, S. Eisenstat, I. Slapnicar, K. Veselic, Z. Drmac, Computing the singular value decomposition with high relative accuracy. Linear Algebra Appl. 99, 21–80 (1999)

    Article  MathSciNet  Google Scholar 

  9. J. Demmel, P. Koev, Accurate SVDs of weakly diagonally dominant M-matrices. Numer. Math. 98, 99–104 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Demmel, P. Koev, The accurate and efficient solution of a totally positive generalized Vandermonde linear system. SIAM J. Matrix Anal. Appl. 27, 142–152 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. F.M. Dopico, P. Koev, Perturbation theory for the LDU factorization and accurate computations for diagonally dominant matrices. Numer. Math. 119, 337–371 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. S. Fallat, C.R. Johnson, Totally Nonnegative Matrices. Princeton Series in Applied Mathematics (Princeton University Press, Princeton, 2011)

    Google Scholar 

  13. M. Gasca, J.M. Peña, Total positivity and Neville elimination. Linear Algebra Appl. 165, 25–44 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Gasca, J.M. Peña, A matricial description of Neville elimination with applications to total positivity. Linear Algebra Appl. 202, 33–53 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Gasca, J.M. Peña, On factorizations of totally positive matrices, in Total Positivity and Its Applications, ed. by M. Gasca, C.A. Micchelli (Kluver Academic, Dordrecht, 1996), pp. 109–130

    Chapter  Google Scholar 

  16. P. Koev, Accurate eigenvalues and SVDs of totally nonnegative matrices. SIAM J. Matrix Anal. Appl. 27, 1–23 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. P. Koev, Accurate computations with totally nonnegative matrices. SIAM J. Matrix Anal. Appl. 29, 731–751 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. A. Marco, J.J. Martínez, A fast and accurate algorithm for solving Bernstein-Vandermonde linear systems. Linear Algebra Appl. 422, 616–628 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Marco, J.J. Martínez, Accurate computations with Said-Ball-Vandermonde matrices. Linear Algebra Appl. 432, 2894–2908 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. J.M. Peña, LDU decompositions with L and U well conditioned. Electron. Trans. Numer. Anal. 18, 198–208 (2004)

    MATH  MathSciNet  Google Scholar 

  21. A. Pinkus, Totally Positive Matrices. Cambridge Tracts in Mathematics, vol. 181 (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  22. Q. Ye, Computing singular values of diagonally dominant matrices to high relative accuracy. Math. Comput. 77, 2195–2230 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan M. Peña .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Peña, J.M. (2015). Accurate Computations for Some Classes of Matrices. In: Abdulle, A., Deparis, S., Kressner, D., Nobile, F., Picasso, M. (eds) Numerical Mathematics and Advanced Applications - ENUMATH 2013. Lecture Notes in Computational Science and Engineering, vol 103. Springer, Cham. https://doi.org/10.1007/978-3-319-10705-9_32

Download citation

Publish with us

Policies and ethics