Wavelet-Based Computer-Aided Detection of Bright Lesions in Retinal Fundus Images | SpringerLink
Skip to main content

Wavelet-Based Computer-Aided Detection of Bright Lesions in Retinal Fundus Images

  • Conference paper
Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications (CompIMAGE 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8641))

Abstract

Computer-aided detection and diagnosis of diabetic retinopathy with retinal fundus images is the necessary step for the implementation of a large scale screening effort in regions where ophthalmologists are not available. In this paper we propose computer-aided binary detector of bright lesions in retinal fundus images. It is based on wavelets for multiresolution feature discrimination and support vector machine (SVM) for classification. After thresholding the sub-band images resulting from the Isotropic Undecimated Wavelet Transform (IUWT) decomposition of the input image, we employ an approach based on the image Hessian eigenvalues and multi-scale image analysis, for designing good feature descriptors of bright lesions. These are afterwards used in the SVM model classifier. Experimental results on our current data set show that the proposed method is efficient and achieves a very good success rate.

This work was partially supported by the project PTDC/MATNAN/0593/2012, and also by CMUC and FCT (Portugal), through European program COMPETE/ FEDER and project PEst-C/MAT/UI0324/2011).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sánchez, C.I., Hornero, R., López, M.I., Aboy, M., Poza, J., Abásolo, D.: A novel automatic image processing algorithm for detection of hard exudates based on retinal image analysis. Medical Engineering & Physics 30, 350–357 (2008)

    Article  Google Scholar 

  2. Phillips, R., Forrester, J., Sharp, P.: Automated detection and quantification of retinal exudates. Graefe’s Archive for Clinical and Experimental Ophthalmology 231, 90–94 (1993)

    Article  Google Scholar 

  3. Wang, H., Hsu, W., Goh, K.G., Lee, M.L.: An effective approach to detect lesions in color retinal images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 181–186 (2000)

    Google Scholar 

  4. Winder, R., Morrow, P., McRitchie, I., Bailie, J., Hart, P.: Algorithms for digital image processing in diabetic retinopathy. Computerized Medical Imaging and Graphics 33, 608–622 (2009)

    Article  Google Scholar 

  5. Starck, J.L., Fadili, J., Murtagh, F.: The undecimated wavelet decomposition and its reconstruction. IEEE Transactions on Image Processing 16, 297–309 (2007)

    Article  MathSciNet  Google Scholar 

  6. Bankhead, P., Scholfield, C.N., McGeown, J.G., Curtis, T.M.: Fast retinal vessel detection and measurement using wavelets and edge location refinement. PloS One 7(3), e32435 (2012)

    Article  Google Scholar 

  7. Figueiredo, I.N., Kumar, S., Leal, C., Figueiredo, P.N.: Computer-assisted bleeding detection in wireless capsule endoscopy images. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 1, 198–210 (2013)

    Google Scholar 

  8. Figueiredo, I.N., Kumar, S., Leal, C., Figueiredo, P.N.: An automatic blood detection algorithm for wireless capsule endoscopy images. In: Tavares, J., Jorge, N. (eds.) Computational Vision and Medical Image Processing, VIPIMAGE 2013, pp. 198–210. Taylor & Francis Group, London (2014) ISBN 978-1-138-00081-0 198–210

    Google Scholar 

  9. Kumar, S., Figueiredo, I.N., Graca, C., Falcao, G.: A gpu accelerated algorithm for blood detection in wireless capsule endoscopy images. In: Tavares, J.M., Renato, R.S.N.J. (eds.) Developments in Medical Image Processing and Computational Vision. Lecture Notes in Computational Vision and Biomechanics. Springer (2014)

    Google Scholar 

  10. Ferreira, J., Bernardes, R., Baptista, P., Cunha-Vaz, J.: Earmarking retinal changes in a sequence of digital color fundus photographs. In: IFMBE Proc., vol. 11, pp. 1727–1983 (2005)

    Google Scholar 

  11. Foracchia, M., Grisan, E., Ruggeri, A.: Luminosity and contrast normalization in retinal images. Medical Image Analysis 9(3), 179–190 (2005)

    Article  Google Scholar 

  12. Figueiredo, I.N., Kumar, S., Figueiredo, P.N.: An intelligent system for polyp detection in wireless capsule endoscopy images. In: Tavares, J., Jorge, N. (eds.) Computational Vision and Medical Image Processing, VIPIMAGE 2013, pp. 229–235. Taylor & Francis Group, London (2014)

    Google Scholar 

  13. Figueiredo, P.N., Figueiredo, I.N., Prasath, S., Tsai, R.: Automatic polyp detection in pillcam colon 2 capsule images and videos: preliminary feasibility report. Diagnostic and Therapeutic Endoscopy, 1–7 (2011)

    Google Scholar 

  14. Canny, J.: A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-8, 679–698 (1986)

    Article  Google Scholar 

  15. Hough, P.V.C.: Methods and means for recognizing complex patterns. U.S. Patent 3 069 654 (December 1962)

    Google Scholar 

  16. Kimme, C., Ballard, D., Sklansky, J.: Finding circles by an array of accumulators. Commun. ACM 18, 120–122 (1975)

    Article  MATH  Google Scholar 

  17. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  18. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Figueiredo, I.N., Kumar, S. (2014). Wavelet-Based Computer-Aided Detection of Bright Lesions in Retinal Fundus Images. In: Zhang, Y.J., Tavares, J.M.R.S. (eds) Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications. CompIMAGE 2014. Lecture Notes in Computer Science, vol 8641. Springer, Cham. https://doi.org/10.1007/978-3-319-09994-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09994-1_21

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09993-4

  • Online ISBN: 978-3-319-09994-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics