Data and Information Granule Rules Retrieval: Differences of Activation in Parietal Cortex | SpringerLink
Skip to main content

Data and Information Granule Rules Retrieval: Differences of Activation in Parietal Cortex

  • Conference paper
Brain Informatics and Health (BIH 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8609))

Included in the following conference series:

  • 1791 Accesses

Abstract

Efficient encoding of Roman rules is based on the neural bases of mathematical cognitive abilities. The present imaging studies have shown that information granule representing a form of Roman rules is associated with arithmetical domain-sensitive parietal cortex, indicating a switch from the data to the information granule retrieval of memory rules. So far, however, little is known about the developing neural substrate for the establishment of rules from data to information granule. The aim of the present fMRI study is to investigate whether and how mathematical intelligence might be enhanced from data to information granule of Roman arithmetic rules in the parietal cortex. Concerning the same rules, the paired t-test analysis indicated that different activation in the bilateral parietal lobule associated with different retrieval levels. In conclusion, the present study yielded some evidence that a successful model for knowledge-building of rules is accompanied by modifications of brain activation patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pedrycz, W.: Knowledge-based clustering: from data to information granules. Wiley Interscience (2005)

    Google Scholar 

  2. Schoenfeld, A.H., Herrmann, D.J.: Problem perception and knowledge structure in expert and novice mathematical problem solvers. J. Exp. Psychol. Learn. Mem. Cogn. 8, 484 (1982)

    Article  Google Scholar 

  3. Kolb, D.A.: Experimental learning. Experience as the source of learning and development. Prentice-Hall, New Jersey (1984)

    Google Scholar 

  4. Baroody, A.J., Dowker, A.: The development of arithmetic concepts and skills: Constructive adaptive expertise. Routledge (2013)

    Google Scholar 

  5. Price, G.R., Mazzocco, M.M., Ansari, D.: Why mental arithmetic counts: brain activation during single digit arithmetic predicts high school math scores. J. Neurosci. 33, 156–163 (2013)

    Article  Google Scholar 

  6. Ischebeck, A., Zamarian, L., Schocke, M., Delazer, M.: Flexible transfer of knowledge in mental arithmetic–an fMRI study. Neuroimage 44, 1103–1112 (2009)

    Article  Google Scholar 

  7. Dehaene, S., Piazza, M., Pinel, P., Cohen, L.: Three parietal circuits for number processing. Cogn. Neuropsychol. 20, 487–506 (2003)

    Article  Google Scholar 

  8. Simon, O., Mangin, J.-F., Cohen, L., Le Bihan, D., Dehaene, S.: Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron 33, 475–487 (2002)

    Article  Google Scholar 

  9. Sandrini, M., Rossini, P.M., Miniussi, C.: The differential involvement of inferior parietal lobule in number comparison: a rTMS study. Neuropsychologia 42, 1902–1909 (2004)

    Article  Google Scholar 

  10. Goel, V., Dolan, R.J.: Explaining modulation of reasoning by belief. Cognition 87, B11–B22 (2003)

    Google Scholar 

  11. Wagner, A.D., Shannon, B.J., Kahn, I., Buckner, R.L.: Parietal lobe contributions to episodic memory retrieval. Trends in Cog. Sci. 9, 445–453 (2005)

    Article  Google Scholar 

  12. Masataka, N., Ohnishi, T., Imabayashi, E., Hirakata, M., Matsuda, H.: Neural correlates for learning to read Roman numerals. Brain Lang 100, 276–282 (2007)

    Article  Google Scholar 

  13. Ashburner, J., Friston, K.J.: Unified segmentation. Neuroimage 26, 839–851 (2005)

    Article  Google Scholar 

  14. Harvey, B., Klein, B., Petridou, N., Dumoulin, S.: Topographic representation of numerosity in the human parietal cortex. Science 341, 1123–1126 (2013)

    Article  Google Scholar 

  15. Henson, R.N., Rugg, M., Shallice, T., Josephs, O., Dolan, R.: Recollection and familiarity in recognition memory: an event-related functional magnetic resonance imaging study. J. Neurosci. 19, 3962–3972 (1999)

    Google Scholar 

  16. Arsalidou, M., Taylor, M.J.: Is 2+ 2= 4? Meta-analyses of brain areas needed for numbers and calculations. NeuroImage 54, 2382–2393 (2011)

    Article  Google Scholar 

  17. Delazer, M., Ischebeck, A., Domahs, F., Zamarian, L., Koppelstaetter, F., Siedentopf, C.M., Kaufmann, L., Benke, T., Felber, S.: Learning by strategies and learning by drill—Evidence from an fMRI study. NeuroImage 25, 838–849 (2005)

    Article  Google Scholar 

  18. Matejko, A.A., Price, G.R., Mazzocco, M.M.M., Ansari, D.: Individual differences in left parietal white matter predict math scores on the Preliminary Scholastic Aptitude Test. NeuroImage 66, 604–610 (2013)

    Article  Google Scholar 

  19. Simon, O., Mangin, J.F., Cohen, L., Le Bihan, D., Dehaene, S.: Topographical Layout of Hand, Eye, Calculation, and Language-Related Areas in the Human Parietal Lobe. Neuron 33, 475–487 (2002)

    Article  Google Scholar 

  20. Newman, S.D., Carpenter, P.A., Varma, S., Just, M.A.: Frontal and parietal participation in problem solving in the Tower of London: fMRI and computational modeling of planning and high-level perception. Neuropsychologia 41, 1668–1682 (2003)

    Article  Google Scholar 

  21. Fletcher, P.C., Frith, C.D., Baker, S.C., Shallice, T., Frackowiak, R.S.J., Dolan, R.J.: The mind’s eye—precuneus activation in memory-related imagery. Neuroimage 2, 195–200 (1995)

    Article  Google Scholar 

  22. Cavanna, A.E., Trimble, M.R.: The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129, 564–583 (2006)

    Article  Google Scholar 

  23. Kelley, W.M., Macrae, C.N., Wyland, C.L., Caglar, S., Inati, S., Heatherton, T.F.: Finding the self? An event-related fMRI study. J. Cogn. Neurosci. 14, 785–794 (2002)

    Article  Google Scholar 

  24. Dehaene, S., Cohen, L.: Cerebral pathways for calculation: Double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex 33, 219–250 (1997)

    Article  Google Scholar 

  25. Takayama, Y., Sugishita, M., Akiguchi, I., Kimura, J.: Isolated acalculia due to left parietal lesion. Arch. Neurol. 51, 286 (1994)

    Article  Google Scholar 

  26. Baldo, J.V., Dronkers, N.F.: Neural correlates of arithmetic and language comprehension: A common substrate? Neuropsychologia 45, 229–235 (2007)

    Article  Google Scholar 

  27. Iwamura, Y.: Somatosensory association cortices. International Congress Series, 3–14 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhao, W. et al. (2014). Data and Information Granule Rules Retrieval: Differences of Activation in Parietal Cortex. In: Ślȩzak, D., Tan, AH., Peters, J.F., Schwabe, L. (eds) Brain Informatics and Health. BIH 2014. Lecture Notes in Computer Science(), vol 8609. Springer, Cham. https://doi.org/10.1007/978-3-319-09891-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09891-3_23

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09890-6

  • Online ISBN: 978-3-319-09891-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics