ANFIS Modeling of PMV Based on Hierarchical Fuzzy System | SpringerLink
Skip to main content

ANFIS Modeling of PMV Based on Hierarchical Fuzzy System

  • Conference paper
Intelligent Computing Methodologies (ICIC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8589))

Included in the following conference series:

  • 3489 Accesses

Abstract

The calculation of predicted mean vote (PMV) index is complex in real time when estimates indoor thermal comfort. As a result, some suitable model had been built to tackle this problem. In this paper, sensitivity analysis is used to sort the importance of each potential input variable on PMV. According to the results of ranking, the dimensional reduction and distribution of input space will be available. Then a T-S type hierarchical fuzzy system will be utilized to reflect PMV index by combining expert knowledge and the association analysis methods. After that the ANFIS is used to train and adjust the parameters of each subsystem through existing dataset. Simulation results show that it not only improves the accuracy but also reduce the total number of fuzzy rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fanger, P.: Thermal Comfort Analysis and Applications in Environmental Engineering. McGraw-Hill, New York (1972)

    Google Scholar 

  2. EN ISO 7730: Moderate Thermal Environments-determination of the PMV and PPD Indices and Specification of the Conditions for Thermal Comfort (1994)

    Google Scholar 

  3. Ye, G., Yang, C., Chen, Y., Li, Y.: A New Approach for Measuring Predicted Mean Vote (PMV) And Standard Effective Temperature (SET∗). Building and Environment 38(1), 30–40 (2003)

    Article  Google Scholar 

  4. Raad, H., Sahari, S.M.: RLF and TS Fuzzy Model Identification of Indoor Thermal Comfort Based on PMV/PPD. Building and Environment 49, 141–153 (2012)

    Article  Google Scholar 

  5. Chen, M., Li, N.: An Interval Type-2 TS Fuzzy Model of Thermal Comfort Index PMV. Transactions on Intelligent Systems 6(3), 219–224 (2011)

    Google Scholar 

  6. Tahir, A., Ertugrul, C.: Adaptive Neuro-fuzzy Inference Systems (ANFIS) Application to Investigate Potential Use of Natural Ventilation in New Building Designs in Turkey. Energy Conversion and Management 48, 1472–1479 (2007)

    Article  Google Scholar 

  7. Jassar, S., Liao, Z., Zhao, L.: Adaptive Neuro-fuzzy Based Inferential Sensor Model for Estimating the Average Air Temperature in Space Heating Systems. Building and Environment 44(8), 1609–1616 (2009)

    Article  Google Scholar 

  8. Raju, G.V.S., Zhou, J., Kisner, R.A.: Hierarchical Fuzzy Control. International Journal of Control 54(5), 1201–1216 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Wang, L.X.: Analysis And Design of Hierarchical Fuzzy Systems. IEEE Transactions on Fuzzy Systems 7(5), 617–624 (1999)

    Article  Google Scholar 

  10. Lee, M.L., Chung, H.Y., Yu, F.M.: Modeling of Hierarchical Fuzzy Systems. Fuzzy Sets and Systems 138(2), 343–361 (2003)

    Article  MathSciNet  Google Scholar 

  11. Jang, J.S.R.: ANFIS: Adaptive-network-based Fuzzy Inference System. IEEE Transactions on Systems, Man, and Cybernetics 23(3), 665–685 (1993)

    Article  Google Scholar 

  12. Zurada, J.M., Malinowski, A.: Sensitivity Analysis for Minimization of Input Data Dimension for Feed Forward Neural Network. Circuits and Systems 6, 447–450 (1994)

    Google Scholar 

  13. Luo, Y., Li, N., Li, S.: ANFIS Modeling of the PMV Thermal Comfort Index Based on Prior Knowledge. In: 2014 9th IEEE Confer. on Industrial Electronics and Applications, ICIEA (2014)

    Google Scholar 

  14. Li, C., Yi, J., Wang, M., Zhang, G.: Prediction of Thermal Comfort Index Using Type-2 Fuzzy Neural Network. In: Zhang, H., Hussain, A., Liu, D., Wang, Z. (eds.) BICS 2012. LNCS (LNAI), vol. 7366, pp. 351–360. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Atthajariyakul, S., Leephakpreeda, T.: Neural Computing Thermal Comfort Index for HVAC Systems. Energy Conversion & Management 46(15), 420–426 (2005)

    Google Scholar 

  16. ANSI, ASHRAE, Thermal Environmental Conditions for Human Occupancy (2004)

    Google Scholar 

  17. ISO 7730: Moderate Thermal Environment

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Luo, Y., Li, N., Li, S. (2014). ANFIS Modeling of PMV Based on Hierarchical Fuzzy System. In: Huang, DS., Jo, KH., Wang, L. (eds) Intelligent Computing Methodologies. ICIC 2014. Lecture Notes in Computer Science(), vol 8589. Springer, Cham. https://doi.org/10.1007/978-3-319-09339-0_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09339-0_73

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09338-3

  • Online ISBN: 978-3-319-09339-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics