An Edge Sensing Fuzzy Local Information C-Means Clustering Algorithm for Image Segmentation | SpringerLink
Skip to main content

An Edge Sensing Fuzzy Local Information C-Means Clustering Algorithm for Image Segmentation

  • Conference paper
Intelligent Computing Methodologies (ICIC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8589))

Included in the following conference series:

  • 3526 Accesses

Abstract

In this paper, we present a variation of fuzzy local information c-means (FLICM) algorithm for image segmentation by introducing a novel tradeoff factor and an effective kernel metric. The proposed tradeoff factor utilizes both local spatial and gray level information in a new way, and the Euclidean distance in FLICM algorithm is substituted by Gaussian Radial Basis function. By the novel factor and kernel metric, the new algorithm has edge identification ability and is insensitive to noise. Experiments result on both synthetic and real world images show that the proposed algorithm is effective and efficient, providing higher segmenting accuracy than other competitive algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pham, D.L., Xu, C., Prince, J.L.: Current Methods in Medical Image Segmentation. Annual Review of Biomedical Engineering 2(1), 315–337 (2000)

    Article  Google Scholar 

  2. Zhang, H., Fritts, J.E., Goldman, S.A.: Image Segmentation Evaluation: A survey of Un supervised Methods. Computer Vision and Image Understanding 110(2), 260–280 (2008)

    Article  Google Scholar 

  3. Naz, S., Majeed, H., Irshad, H.: Image Segmentation Using Fuzzy Clustering: A survey. In: 6th International Conference on Emerging Technologies, pp. 181–186. IEEE Press, Islamabad (2010)

    Google Scholar 

  4. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Bibliometrics, New York (1981)

    Book  MATH  Google Scholar 

  5. Bezdek, J.C., Hall, L.O., Clarke, L.P.: Review of MR Image Segmentation Techniques Using Pattern Recognition. Medical Physics-Lancaster PA 20, 1033 (1993)

    Google Scholar 

  6. Pham, D.L.: Spatial Models for Fuzzy Clustering. Computer Vision and Image Understanding 84(2), 285–297 (2001)

    Article  MATH  Google Scholar 

  7. Ahmed, M.N., Yamany, S.M., Farag, A.A., Moriarty, T.: Bias Field Estimation and Adaptive Segmentation of MRI Data Using A Modified Fuzzy C-Means Algorithm. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 250–255. IEEE Press, Fort Collins (1999)

    Google Scholar 

  8. Ahmed, M.N., Yamany, S.M., Mohamed, N., Farag, A.A., Moriarty, T.: A Modified Fuzzy C-Means Algorithm for Bias Field Estimation and Segmentation of MRI Data. IEEE Transactions on Medical Imaging 21(3), 193–199 (2002)

    Article  Google Scholar 

  9. Chen, W., Giger, M.L.: A Fuzzy C-Means (FCM) Based Algorithm for Intensity Inhomogeneity Correction and Segmentation of MR Images. In: IEEE International Symposium on Biomedical Imaging: Nano to Macro, pp. 1307–1310. IEEE Press (2004)

    Google Scholar 

  10. Chen, Y., Zhang, J., Wang, S., Zheng, Y.: Brain Magnetic Resonance Image Segmentation Based on an Adapted Non-local Fuzzy C-Means Method. IET Computer Vision 6(6), 610–625 (2012)

    Article  MathSciNet  Google Scholar 

  11. Szilágyi, L., Szilágyi, S.M., Benyó, B.: Efficient Inhomogeneity Compensation Using fuzzy C-Means Clustering Models. Computer Methods and Programs in Biomedicine 108(1), 80–89 (2012)

    Article  Google Scholar 

  12. Chen, S., Zhang, D.: Robust Image Segmentation Using FCM with Spatial Constraints Based on New Kernel-Induced Distance Measure. IEEE Transaction on Syst. Man. Cybern 34, 1907–1916 (2004)

    Article  Google Scholar 

  13. Thamaraichelvi, B., Yamuna, G.Y.: A Novel Efficient Kernelized Fuzzy C-means with Additive Bias Field for Brain Image Segmentation. In: 2013 International Conference on Communications and Signal Processing, pp. 68–72. IEEE Press, Melmaruvathur (2013)

    Chapter  Google Scholar 

  14. Kaur, P., Lamba, I.M.S., Gosain, A.: Kernel Type-2 FCM Cluastering Algorithm in Segmentation of Noisy Medical Image. In: Recent Advances in Intelligent Computational Systems(RAICS), pp. 493–498. IEEE Press, New Delhi (2011)

    Google Scholar 

  15. Kannan, S.R., Ramathilagam, S., Devi, R., Sathya, A.: Robust Kernel FCM in Segmentation of Breast Medical Images. Expert Systems with Applications 38(4), 4382–4389 (2011)

    Article  Google Scholar 

  16. Caldairou, B., Passat, N., Habas, P.A., Studholme, C.: A Non-local Fuzzy Segmentation Method: Application to Brain MRI. Pattern Recognition 44(9), 1916–1927 (2011)

    Article  Google Scholar 

  17. Zhao, F.: Fuzzy Clustering Algorithms with Self-tuning Non-local Spatial Information for Image Segmentation. Neurocomputing 106, 115–125 (2013)

    Article  Google Scholar 

  18. Wang, P., Wang, H.: A Modified FCM Algorithm for MRI Brain Image Segmentation. In: 8th International Seminar on Future BioMedical Information Engineering, pp. 26–29. IEEE Press, Wuhan (2008)

    Google Scholar 

  19. Shi, Z., Lihuang, S., Li, L., Hua, Z.: A Modified Fuzzy C-means for Bias Field Estimation and Segmentation of Brain MR Image. In: 25th Chinese Control and Decision Conference (CCDC), pp. 2080–2085. IEEE Press, Guiyang (2013)

    Google Scholar 

  20. Vansteenkiste, E., Philips, W.: Spatially Coherent Fuzzy Clustering for Accurate and Noise-robust Image Segmentation. IEEE Signal Processing Letters 20(4), 295–298 (2013)

    Article  Google Scholar 

  21. Szilagyi, L., Benyo, Z., Szilágyi, S.M., Adam, H.S.: MR Brain Image Segmentation Using an Enhanced Fuzzy C-means Algorithm. In: Proceedings of the 25th Annual International Conference of the Engineering in Medicine and Biology Society, vol. 1, pp. 724–726. IEEE Press (2003)

    Google Scholar 

  22. Cai, W., Chen, S., Zhang, D.: Fast and Robust Fuzzy C-means Clustering Algorithms incorporating Local Information for Image Segmentation. Pattern Recognition 40(3), 825–838 (2007)

    Article  MATH  Google Scholar 

  23. Krinidis, S., Chatzis, V.: A Robust Ruzzy Local Information C-means Clustering Algorithm. IEEE Transactions on Image Processing 19(5), 1328–1337 (2010)

    Article  MathSciNet  Google Scholar 

  24. Gong, M., Liang, Y., Shi, J., Ma, W., Ma, J.: Fuzzy C-means Clustering with Local Information and Kernel Metric for Image Segmentation. IEEE Transactions on Image Processing 22(2), 573–584 (2013)

    Article  MathSciNet  Google Scholar 

  25. Muller, K., Mika, S., Ratsch, G., Tsuda, K., Scholkopf, B.: An Introduction to Kernel-based Learning Algorithms. IEEE Transactions on Neural Networks 12(2), 181–201 (2001)

    Article  Google Scholar 

  26. Girolami, M.: Mercer Kernel-based Clustering in Feature Space. IEEE Transactions on Neural Networks 13(3), 780–784 (2002)

    Article  Google Scholar 

  27. BrainWeb: Simulated Brain Database, http://brainweb.bic.mni.mggill.ca/brainweb/

  28. Crum, W.R., Camara, O., Hill, D.L.: Generalized Overlap Measures for Evaluation and Validation in Medical Image Analysis. IEEE Transactions on Medical Imaging 25(11), 1451–1461 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, X., Lin, X., Yuan, Z. (2014). An Edge Sensing Fuzzy Local Information C-Means Clustering Algorithm for Image Segmentation. In: Huang, DS., Jo, KH., Wang, L. (eds) Intelligent Computing Methodologies. ICIC 2014. Lecture Notes in Computer Science(), vol 8589. Springer, Cham. https://doi.org/10.1007/978-3-319-09339-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09339-0_23

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09338-3

  • Online ISBN: 978-3-319-09339-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics