Variable Dependencies and Q-Resolution | SpringerLink
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8561))

Abstract

We propose Q(D)-resolution, a proof system for Quantified Boolean Formulas. Q(D)-resolution is a generalization of Q-resolution parameterized by a dependency scheme D. This system is motivated by the generalization of the QDPLL algorithm using dependency schemes implemented in the solver DepQBF. We prove soundness of Q(D)-resolution for a dependency scheme D that is strictly more general than the standard dependency scheme; the latter is currently used by DepQBF. This result is obtained by proving correctness of an algorithm that transforms Q(D)-resolution refutations into Q-resolution refutations and could be of independent practical interest. We also give an alternative characterization of resolution- path dependencies in terms of directed walks in a formula’s implication graph which admits an algorithmically more advantageous treatment.

This research was supported by the ERC (COMPLEX REASON, 239962).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balabanov, V., Jiang, J.H.R.: Unified QBF certification and its applications. Formal Methods in System Design 41(1), 45–65 (2012)

    Article  MATH  Google Scholar 

  2. Lonsing, F., Biere, A.: Integrating dependency schemes in search-based QBF solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 158–171. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Boudou, J., Woltzenlogel Paleo, B.: Compression of propositional resolution proofs by lowering subproofs. In: Galmiche, D., Larchey-Wendling, D. (eds.) TABLEAUX 2013. LNCS, vol. 8123, pp. 59–73. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Bubeck, U.: Model-based transformations for quantified Boolean formulas. Ph.D. thesis. University of Paderborn (2010)

    Google Scholar 

  5. Büning, H.K., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Information and Computation 117(1), 12–18 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Büning, H.K., Subramani, K., Zhao, X.: Boolean functions as models for quantified Boolean formulas. Journal of Automated Reasoning 39(1), 49–75 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cadoli, M., Schaerf, M., Giovanardi, A., Giovanardi, M.: An algorithm to evaluate Quantified Boolean Formulae and its experimental evaluation. Journal of Automated Reasoning 28(2) (2002)

    Google Scholar 

  8. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning in the evaluation of Quantified Boolean Formulas. J. Artif. Intell. Res. 26, 371–416 (2006)

    MATH  MathSciNet  Google Scholar 

  9. Goultiaeva, A., Gelder, A.V., Bacchus, F.: A uniform approach for generating proofs and strategies for both true and false QBF formulas. In: Walsh, T. (ed.) Proceedings of IJCAI 2011, pp. 546–553. IJCAI/AAAI (2011)

    Google Scholar 

  10. Janota, M., Marques-Silva, J.: On propositional QBF expansions and Q-resolution. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 67–82. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Kleine Büning, H., Lettman, T.: Propositional logic: Deduction and algorithms. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  12. Lonsing, F.: Dependency Schemes and Search-Based QBF Solving: Theory and Practice. Ph.D. thesis. Johannes Kepler University, Linz, Austria (April 2012)

    Google Scholar 

  13. Niemetz, A., Preiner, M., Lonsing, F., Seidl, M., Biere, A.: Resolution-based certificate extraction for QBF. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 430–435. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Samer, M.: Variable dependencies of quantified CSPs. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 512–527. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Samer, M., Szeider, S.: Backdoor sets of quantified Boolean formulas. Journal of Automated Reasoning 42(1), 77–97 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Slivovsky, F., Szeider, S.: Computing resolution-path dependencies in linear time. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 58–71. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time. In: Proc. Theory of Computing, pp. 1–9. ACM (1973)

    Google Scholar 

  18. Van Gelder, A.: Variable independence and resolution paths for quantified Boolean formulas. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 789–803. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Slivovsky, F., Szeider, S. (2014). Variable Dependencies and Q-Resolution. In: Sinz, C., Egly, U. (eds) Theory and Applications of Satisfiability Testing – SAT 2014. SAT 2014. Lecture Notes in Computer Science, vol 8561. Springer, Cham. https://doi.org/10.1007/978-3-319-09284-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09284-3_21

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09283-6

  • Online ISBN: 978-3-319-09284-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics