Abstract
We propose Q(D)-resolution, a proof system for Quantified Boolean Formulas. Q(D)-resolution is a generalization of Q-resolution parameterized by a dependency scheme D. This system is motivated by the generalization of the QDPLL algorithm using dependency schemes implemented in the solver DepQBF. We prove soundness of Q(D)-resolution for a dependency scheme D that is strictly more general than the standard dependency scheme; the latter is currently used by DepQBF. This result is obtained by proving correctness of an algorithm that transforms Q(D)-resolution refutations into Q-resolution refutations and could be of independent practical interest. We also give an alternative characterization of resolution- path dependencies in terms of directed walks in a formula’s implication graph which admits an algorithmically more advantageous treatment.
This research was supported by the ERC (COMPLEX REASON, 239962).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Balabanov, V., Jiang, J.H.R.: Unified QBF certification and its applications. Formal Methods in System Design 41(1), 45–65 (2012)
Lonsing, F., Biere, A.: Integrating dependency schemes in search-based QBF solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 158–171. Springer, Heidelberg (2010)
Boudou, J., Woltzenlogel Paleo, B.: Compression of propositional resolution proofs by lowering subproofs. In: Galmiche, D., Larchey-Wendling, D. (eds.) TABLEAUX 2013. LNCS, vol. 8123, pp. 59–73. Springer, Heidelberg (2013)
Bubeck, U.: Model-based transformations for quantified Boolean formulas. Ph.D. thesis. University of Paderborn (2010)
Büning, H.K., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Information and Computation 117(1), 12–18 (1995)
Büning, H.K., Subramani, K., Zhao, X.: Boolean functions as models for quantified Boolean formulas. Journal of Automated Reasoning 39(1), 49–75 (2007)
Cadoli, M., Schaerf, M., Giovanardi, A., Giovanardi, M.: An algorithm to evaluate Quantified Boolean Formulae and its experimental evaluation. Journal of Automated Reasoning 28(2) (2002)
Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning in the evaluation of Quantified Boolean Formulas. J. Artif. Intell. Res. 26, 371–416 (2006)
Goultiaeva, A., Gelder, A.V., Bacchus, F.: A uniform approach for generating proofs and strategies for both true and false QBF formulas. In: Walsh, T. (ed.) Proceedings of IJCAI 2011, pp. 546–553. IJCAI/AAAI (2011)
Janota, M., Marques-Silva, J.: On propositional QBF expansions and Q-resolution. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 67–82. Springer, Heidelberg (2013)
Kleine Büning, H., Lettman, T.: Propositional logic: Deduction and algorithms. Cambridge University Press, Cambridge (1999)
Lonsing, F.: Dependency Schemes and Search-Based QBF Solving: Theory and Practice. Ph.D. thesis. Johannes Kepler University, Linz, Austria (April 2012)
Niemetz, A., Preiner, M., Lonsing, F., Seidl, M., Biere, A.: Resolution-based certificate extraction for QBF. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 430–435. Springer, Heidelberg (2012)
Samer, M.: Variable dependencies of quantified CSPs. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 512–527. Springer, Heidelberg (2008)
Samer, M., Szeider, S.: Backdoor sets of quantified Boolean formulas. Journal of Automated Reasoning 42(1), 77–97 (2009)
Slivovsky, F., Szeider, S.: Computing resolution-path dependencies in linear time. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 58–71. Springer, Heidelberg (2012)
Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time. In: Proc. Theory of Computing, pp. 1–9. ACM (1973)
Van Gelder, A.: Variable independence and resolution paths for quantified Boolean formulas. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 789–803. Springer, Heidelberg (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Slivovsky, F., Szeider, S. (2014). Variable Dependencies and Q-Resolution. In: Sinz, C., Egly, U. (eds) Theory and Applications of Satisfiability Testing – SAT 2014. SAT 2014. Lecture Notes in Computer Science, vol 8561. Springer, Cham. https://doi.org/10.1007/978-3-319-09284-3_21
Download citation
DOI: https://doi.org/10.1007/978-3-319-09284-3_21
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09283-6
Online ISBN: 978-3-319-09284-3
eBook Packages: Computer ScienceComputer Science (R0)