Prediction of Single-Nucleotide Polymorphisms Causative of Rare Diseases | SpringerLink
Skip to main content

Prediction of Single-Nucleotide Polymorphisms Causative of Rare Diseases

  • Conference paper
  • First Online:
Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2013)

Abstract

The study of rare diseases uses next-generation sequencing (NGS) technology to detect causative mutations in the human genome. NGS is a new approach for biomedical research, useful for the genetic diagnosis in extremely heterogeneous conditions. Nevertheless, only few publications address the problem when pooled experiments are considered, and existing tools are often inaccurate. In this work we focus on rare diseases and we describe how data are generated by NGS.

We present how data are organized in the pre-processing phase, how they are filtered and features constructed in the learning phase. We compare different computational procedures to identify and classify variants potentially related to rare diseases and we biologically validate the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5491
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 6864
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. An Introduction to Next-Generation Sequencing Technology. www.illumina.com/NGS

  2. Licastro, D., Mutarelli, M., Peluso, I., Neveling, K., Wieskamp, N., Rispoli, R., Vozzi, D., Athanasakis, E., D’Eustacchio, A., Pizzo, M., D’Amico, F., Ziviello, C., Simonelli, F., Fabretto, A., Scheffer, H., Gasparini, P., Banfi, S., Nigro, V.: Molecular diagnosis of Usher syndrome: application of two different next generation sequencing-based procedures. PLoS ONE 7, Article number 43799 (2012)

    Google Scholar 

  3. Cacciottolo, M., Numitone, G., Aurino, S., Caserta, I.R., Fanin, M., Politano, L., Minetti, C., Ricci, E., Piluso, G., Angelini, C., Nigro, V.: Muscular dystrophy with marked dysferlin deficiency is consistently caused by primary dysferlin gene mutations. Eur. J. Hum. Genet. 19, 974–980 (2011)

    Article  Google Scholar 

  4. Nigro, V.: Improving the course of muscular dystrophy? (Editorial). Acta Myol. 31, 109 (2012)

    Google Scholar 

  5. Kaplan, J.C.: The 2012 version of the gene table of monogenic neuromuscular disorders. Neuromuscul. Disord. 21, 833–861 (2011)

    Article  Google Scholar 

  6. Futschik, A., Schlotterer, C.: The next generation of molecular markers from massively parallel sequencing of pooled DNA samples. Genetics 186, 207–218 (2010)

    Article  Google Scholar 

  7. Calvo, S., Tucker, E., Compton, A., Kirby, D., Crawford, G., Burtt, N., Rivas, M., Guiducci, C., Bruno, D., Goldberger, O., Redman, M., Wiltshire, E., Wilson, C., Altshuler, D., Gabriel, S., Daly, M., Thorburn, D., Mootha, V.: High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency. Nat. Genet. 42(10), 851–860 (2011)

    Article  Google Scholar 

  8. Wang, T., Pradhan, K., Ye, K., Wong, L.-J., Rohan, T.: Estimating allele frequency from next-generation sequencing of pooled mitochondrial DNA samples. Front. Genet. 2, 51 (2011)

    Google Scholar 

  9. Ding, J., Bashashati, A., Roth, A., Oloumi, A., Tse, K., Zeng, T., Haffari, G., Hirst, M., Marra, M., Condon, A., Aparicio, S., Shah, S.: Feature-based classifiers for somatic mutation detection in tumour-normal paired sequencing data. Bioinformatics 28, 167–175 (2012)

    Article  Google Scholar 

  10. Next-Gen Sequencing: Advancing Sequencing for a Better World. Agilent Technologies Target Enrichment Solutions. www.agilent.com/genomics/ngs

  11. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., G.P.D.P. Subgroup: The sequence alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009)

    Article  Google Scholar 

  12. Mangasarian, O., Wild, E.: Multisurface proximal support vector machine classification via generalized eigenvalues. IEEE Trans. Pattern Anal. Mach. Intell. 28, 69–74 (2006)

    Article  Google Scholar 

  13. Parlett, B.N.: The Symmetric Eigenvalue Problem, p. 357. SIAM, Philadelphia (1998)

    Book  MATH  Google Scholar 

  14. Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Clarendon Press, Oxford (1988)

    MATH  Google Scholar 

  15. Guarracino, M.R., Cifarelli, C., Seref, O., Pardalos, P.: A classification algorithm based on generalized eigenvalue problems. Optim. Method Softw. 22, 73–81 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Cifarelli, C., Guarracino, M., Seref, O., Cuciniello, S., Pardalos, P.: Incremental classification with generalized eigenvalues. J. Classif. 24, 205–219 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. DePristo, M.A., Banks, E., Poplin, R.E., Garimella, K.V., Maguire, J.R., Hartl, C., Philippakis, A.A., del Angel, G., Rivas, M.A., Hanna, M., McKenna, A., Fennell, T.J., Kernytsky, A.M., Sivachenko, A.Y., Cibulskis, K., Gabriel, S.B., Altshuler, D., Daly, M.J.: A framework for variation discovery and genotyping using nextgeneration DNA sequencing data. Nat. Genet. 43, 491–498 (2011)

    Article  Google Scholar 

  18. McKenna, A., Hanna, M., Banks, E., et al.: The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010)

    Article  Google Scholar 

  19. Wei, Z., Wang, W., Hu, P., Lyon, G.J., Hakonarson, H.: SNVer: a statistical tool for variant calling in analysis of pooled or individual next-generation sequencing data. Nucleic Acids Res. 39, 1–13 (2011)

    Article  Google Scholar 

  20. Garrison, E., Marth, G. (2012). Haplotype-based variant detection from short-read sequencing. arXiv:1207.3907

  21. Bansal, V.: A statistical method for the detection of variants from next-generation resequencing of DNA pools. Bioinformatics 26, 318–324 (2010)

    Article  Google Scholar 

  22. Platt, J.: Fast training of support vector machines using sequential minimal optimization. In: Schoelkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning. MIT Press, Cambridge (1998)

    Google Scholar 

  23. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Mach. Learn. 29, 131–163 (1997)

    Article  MATH  Google Scholar 

  24. Fix, E., Hodges, J.L.: Discriminatory analysis, non parametric discrimination: consistency properties. Technical report 4, USAF School of Aviation Medicine, Randolph Field, Texas (1951)

    Google Scholar 

  25. Broomhead, D.S., Lowe, D.: Multivariable functional interpolation and adaptive networks. Complex Syst. 2, 321–355 (1988)

    MATH  MathSciNet  Google Scholar 

  26. Landwehr, N., Hall, M., Frank, E.: Logistic model trees. Mach. Learn. 95, 161–205 (2005)

    Article  Google Scholar 

  27. Sumner, M., Frank, E., Hall, M.: Speeding up logistic model tree induction. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 675–683. Springer, Heidelberg (2005)

    Google Scholar 

  28. Rennie, J.D.M., Shih, L., Teevan, J., Karge, D.R.: Tackling the poor assumptions of naive bayes text classifiers. In: Proceedings of the Twentieth International Conference on Machine Learning, pp. 616–623 (2003)

    Google Scholar 

  29. Shalev-Shwartz, S., Singer, Y., Srebro, N.: Pegasos: primal estimated Sub-GrAdient SOlver for SVM. In: 24th International Conference on Machine Learning, pp. 807–814 (2007)

    Google Scholar 

  30. Ng, P.C., Henikoff, S.: SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31, 3812–3814 (2003)

    Article  Google Scholar 

  31. Mitchell, T.: Machine Learning. McGraw Hill, Berkshire (1997)

    MATH  Google Scholar 

Download references

Acknowledgment

Authors would like to thank V. Nigro, M. Savarese, G. Di Fruscio, T. Giugliano, M. Iacomino, A. Torella, A. Garofalo, C. Pisano, F. Del Vecchio Blanco and G. Piluso (Seconda Universitá di Napoli, Patologia Generale), M. Mutarelli, V. Singh Marwah and M. Dionisi (TIGEM), and Italian LGMD network. This work has been partially funded by Italian Flagship project Interomics and by \(\mathrm{{PON02}}\_\)00619 projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Brigida Ferraro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ferraro, M.B., Guarracino, M.R. (2014). Prediction of Single-Nucleotide Polymorphisms Causative of Rare Diseases. In: Formenti, E., Tagliaferri, R., Wit, E. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2013. Lecture Notes in Computer Science(), vol 8452. Springer, Cham. https://doi.org/10.1007/978-3-319-09042-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09042-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09041-2

  • Online ISBN: 978-3-319-09042-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics