A Multi-path Strategy for Hierarchical Ensemble Classification | SpringerLink
Skip to main content

A Multi-path Strategy for Hierarchical Ensemble Classification

  • Conference paper
Machine Learning and Data Mining in Pattern Recognition (MLDM 2014)

Abstract

A solution to the multi-class classification problem is proposed founded on the concept of an ensemble of classifiers arranged in a hierarchical binary tree formation. An issue with this solution is that if a miss-classification occurs early on in the process (near the start of the hierarchy) there is no possibility of rectifying this error later on in the process. To address this issue a multi-path strategy is investigated based on the idea of using Classification Association Rule Miners at individual nodes. The conjectured advantage offered is that the confidence values associated with this form of classifier can be used to inform the proposed multi-path strategy. More specifically the confidence values are used to determine, at each node, whether one or two paths should be followed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: VLDB 1994, pp. 487–499 (1994)

    Google Scholar 

  2. Alshdaifat, E., Coenen, F., Dures, K.: Hierarchical classification for solving multi-class problems: A new approach using naive bayesian classification. In: Motoda, H., Wu, Z., Cao, L., Zaiane, O., Yao, M., Wang, W. (eds.) ADMA 2013, Part I. LNCS, vol. 8346, pp. 493–504. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Alshdaifat, E., Coenen, F., Dures, K.: Hierarchical single label classification: An alternative approach. In: Bramer, M., Petridis, M. (eds.) SGAI Conf., pp. 39–52. Springer (2013)

    Google Scholar 

  4. Athimethphat, M., Lerteerawong, B.: Binary classification tree for multiclass classification with observation-based clustering. In: 2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), pp. 1–4 (2012)

    Google Scholar 

  5. Bache, K., Lichman, M.: UCI machine learning repository (2013), http://archive.ics.uci.edu/ml

  6. Bay, S.D.: Combining nearest neighbor classifiers through multiple feature subsets. In: Proc. 17th Intl. Conf. on Machine Learning, pp. 37–45. Morgan Kaufmann (1998)

    Google Scholar 

  7. Beygelzimer, A., Langford, J., Ravikumar, P.: Multiclass Classification with Filter Trees (June 2007), http://hunch.net/~jl/projects/reductions/mc_to_b/invertedTree.pdf

  8. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  9. Breiman, L.: Random forests. In: Machine Learning, pp. 5–32 (2001)

    Google Scholar 

  10. Chen, Y., Crawford, M.M., Ghosh, J.: Integrating support vector machines in a hierarchical output decomposition framework. In: 2004 International Geosci. and Remote Sens. Symposium, pp. 949–953 (2004)

    Google Scholar 

  11. Coenen, F.: The LUCS-KDD discretised/normalised arm and carm data library (2003), http://www.csc.liv.ac.uk/~frans/KDD/Software/LUCS_KDD_DN

  12. Coenen, F., Leng, P.: The effect of threshold values on association rule based classification accuracy. Journal of Data and Knowledge Engineering 60(2), 345–360 (2007)

    Article  Google Scholar 

  13. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000), http://dl.acm.org/citation.cfm?id=648054.743935

    Chapter  Google Scholar 

  14. Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. JAIR (1995)

    Google Scholar 

  15. Freund, Y., Schapire, R., Abe, N.: A short introduction to boosting. Journal of Japanese Society for Artificial Intelligence 14(5), 771–780 (1999)

    Google Scholar 

  16. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. SIGMOD Rec. 29(2), 1–12 (2000), http://doi.acm.org/10.1145/335191.335372

    Article  Google Scholar 

  17. Jiawei, H., Micheline, K., Jian, P.: Data Mining: Concepts and Techniques. Morgan Kaufmann (2011)

    Google Scholar 

  18. Kumar, S., Ghosh, J., Crawford, M.M.: Hierarchical fusion of multiple classifiers for hyperspectral data analysis. Pattern Anal. Appl. 5(2), 210–220 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lei, H., Govindaraju, V.: Half-against-half multi-class support vector machines. In: Oza, N.C., Polikar, R., Kittler, J., Roli, F. (eds.) MCS 2005. LNCS, vol. 3541, pp. 156–164. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  20. Leonard, T., Hsu, J.S.: Bayesian Methods: An Analysis for Statisticians and Interdisciplinary Researchers. Cambridge University Press (2001)

    Google Scholar 

  21. Li, W., Han, J., Pei, J.: Cmar: Accurate and efficient classification based on multiple class-association rules. In: Proceedings of the 2001 IEEE International Conference on Data Mining, ICDM 2001, pp. 369–376. IEEE Computer Society, Washington, DC (2001), http://dl.acm.org/citation.cfm?id=645496.657866

    Google Scholar 

  22. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In: Proc. KDD 1998 Conference (AAAI 1998), pp. 80–86 (1998)

    Google Scholar 

  23. Machov, K., Bark, F., Bednr, P.: A bagging method using decision trees in the role of base classifiers (2006)

    Google Scholar 

  24. Madzarov, G., Gjorgjevikj, D., Chorbev, I.: A multi-class svm classifier utilizing binary decision tree (2008)

    Google Scholar 

  25. Oza, N., Tumer, K.: Classifier ensembles: Select real-world applications. Information Fusion 9(1), 4–20 (2008), http://dx.doi.org/10.1016/j.inffus.2007.07.002

    Article  Google Scholar 

  26. Quinlan, J.R.: Induction of decision trees. Machine Learning 1(1), 81–106 (1986)

    Google Scholar 

  27. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)

    Google Scholar 

  28. Rifkin, R.M., Klautau, A.: In defense of one-vs-all classification. Journal of Machine Learning Research 5, 101–141 (2004)

    MATH  MathSciNet  Google Scholar 

  29. Schapire, R.E.: Using output codes to boost multiclass learning problems. In: Machine Learning: Proceedings of the Fourteenth International Conference (ICML1997) (1997)

    Google Scholar 

  30. Tax, D.M.J., Duin, R.P.W.: Using two-class classifiers for multiclass classification. In: ICPR (2), pp. 124–127 (2002)

    Google Scholar 

  31. Vapnik, V.N.: The Nature of Statistical Learning Theory. Statistics for Engineering and Information Science. Springer (2000)

    Google Scholar 

  32. Vural, V., Dy, J.G.: A hierarchical method for multi-class support vector machines. In: Proceedings of the Twenty-First International Conference on Machine Learning, ICML 2004, p. 105. ACM, New York (2004), http://doi.acm.org/10.1145/1015330.1015427

    Google Scholar 

  33. Yin, X., Han, J.: Cpar: Classification based on predictive association rules (2003)

    Google Scholar 

  34. Zhang, G.P.: Neural networks for classification: A survey. IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews 30(4), 451–462 (2000)

    Article  Google Scholar 

  35. Zhou, Z.H.: Ensemble learning. In: Li, S.Z., Jain, A.K. (eds.) Encyclopedia of Biometrics, pp. 270–273. Springer US (2009), http://dblp.uni-trier.de/db/reference/bio/e.html#Zhou09

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Alshdaifat, E., Coenen, F., Dures, K. (2014). A Multi-path Strategy for Hierarchical Ensemble Classification. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2014. Lecture Notes in Computer Science(), vol 8556. Springer, Cham. https://doi.org/10.1007/978-3-319-08979-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08979-9_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08978-2

  • Online ISBN: 978-3-319-08979-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics