A New and Formalized Proof of Abstract Completion | SpringerLink
Skip to main content

A New and Formalized Proof of Abstract Completion

  • Conference paper
Interactive Theorem Proving (ITP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8558))

Included in the following conference series:

Abstract

Completion is one of the most studied techniques in term rewriting. We present a new proof of the correctness of abstract completion that is based on peak decreasingness, a special case of decreasing diagrams. Peak decreasingness replaces Newman’s Lemma and allows us to avoid proof orders in the correctness proof of completion. As a result, our proof is simpler than the one presented in textbooks, which is confirmed by our Isabelle/HOL formalization. Furthermore, we show that critical pair criteria are easily incorporated in our setting.

Supported by JSPS KAKENHI Grant Number 25730004 and the Austrian Science Fund (FWF) projects I963 and J3202.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press (1998)

    Google Scholar 

  2. Bachmair, L.: Canonical Equational Proofs. Birkhäuser (1991)

    Google Scholar 

  3. Bachmair, L., Dershowitz, N.: Equational inference, canonical proofs, and proof orderings. Journal of the ACM 41(2), 236–276 (1994), doi:10.1145/174652.174655

    Article  MATH  MathSciNet  Google Scholar 

  4. Bachmair, L., Dershowitz, N., Hsiang, J.: Orderings for equational proofs. In: Proc. 1st IEEE Symposium on Logic in Computer Science, pp. 346–357 (1986)

    Google Scholar 

  5. Bachmair, L., Dershowitz, N., Plaisted, D.A.: Resolution of Equations in Algebraic Structures: Completion without Failure, vol. 2, pp. 1–30. Academic Press (1989)

    Google Scholar 

  6. Blanchette, J.C., Bulwahn, L., Nipkow, T.: Automatic proof and disproof in Isabelle/ HOL. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS, vol. 6989, pp. 12–27. Springer, Heidelberg (2011), doi:10.1007/978-3-642-24364-6

    Chapter  Google Scholar 

  7. Galdino, A.L., Ayala-Rincón, M.: A formalization of the Knuth-Bendix(-Huet) critical pair theorem. Journal of Automated Reasoning 45(3), 301–325 (2010), doi:10.1007/s10817-010-9165-2

    Article  MATH  MathSciNet  Google Scholar 

  8. Huet, G.: A complete proof of correctness of the Knuth-Bendix completion algorithm. Journal of Computer and System Sciences 23(1), 11–21 (1981), doi:10.1016/0022-0000(81)90002-7

    Article  MATH  MathSciNet  Google Scholar 

  9. Huffman, B., Urban, C.: A new foundation for Nominal Isabelle. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 35–50. Springer, Heidelberg (2010), doi:10.1007/978-3-642-14052-5_5

    Chapter  Google Scholar 

  10. Kapur, D., Musser, D.R., Narendran, P.: Only prime superpositions need be considered in the Knuth-Bendix completion procedure. Journal of Symbolic Computation 6(1), 19–36 (1988), doi:10.1016/S0747-7171(88)80019-1

    Article  MATH  MathSciNet  Google Scholar 

  11. Knuth, D.E., Bendix, P.: Simple word problems in universal algebras. In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297 (1970)

    Google Scholar 

  12. Nipkow, T., Paulson, L.C., Wenzel, M. (eds.): Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002), doi:10.1007/3-540-45949-9

    MATH  Google Scholar 

  13. van Oostrom, V.: Confluence by decreasing diagrams. Theoretical Computer Science 126(2), 259–280 (1994), doi:10.1016/0304-3975(92)00023-K

    Article  MATH  MathSciNet  Google Scholar 

  14. van Raamsdonk, F. (ed.): Proc. 24th International Conference on Rewriting Techniques and Applications. Leibniz International Proceedings in Informatics, vol. 21. Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)

    Google Scholar 

  15. Ruiz-Reina, J.-L., Alonso, J.-A., Hidalgo, M.-J., Martín-Mateos, F.-J.: Formal proofs about rewriting using ACL2. Annals of Mathematics and Artificial Intelligence 36(3), 239–262 (2002), doi:10.1023/A:1016003314081

    Article  MATH  MathSciNet  Google Scholar 

  16. Sternagel, C., Thiemann, R.: Formalizing Knuth-Bendix orders and Knuth-Bendix completion. In: van Raamsdonk [14], pp. 287–302, doi:10.4230/LIPIcs.RTA.2013.287

    Google Scholar 

  17. Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science, vol. 55. Cambridge University Press (2003)

    Google Scholar 

  18. Urban, C., Kaliszyk, C.: General bindings and alpha-equivalence in Nominal Isabelle. Logical Methods in Computer Science 8(2), 465–476 (2012), doi:10.2168/LMCS-8(2:14)2012

    Article  MathSciNet  Google Scholar 

  19. Winkler, F., Buchberger, B.: A criterion for eliminating unnecessary reductions in the Knuth-Bendix algorithm. In: Proc. Colloquium on Algebra, Combinatorics and Logic in Computer Science. Colloquia Mathematica Societatis J. Bolyai, vol. II, 42, pp. 849–869 (1986)

    Google Scholar 

  20. Zankl, H.: Decreasing diagrams – formalized. In: van Raamsdonk [14], pp. 352–367, doi:10.4230/LIPIcs.RTA.2013352

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hirokawa, N., Middeldorp, A., Sternagel, C. (2014). A New and Formalized Proof of Abstract Completion. In: Klein, G., Gamboa, R. (eds) Interactive Theorem Proving. ITP 2014. Lecture Notes in Computer Science, vol 8558. Springer, Cham. https://doi.org/10.1007/978-3-319-08970-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08970-6_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08969-0

  • Online ISBN: 978-3-319-08970-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics