Online Evolution of Deep Convolutional Network for Vision-Based Reinforcement Learning | SpringerLink
Skip to main content

Online Evolution of Deep Convolutional Network for Vision-Based Reinforcement Learning

  • Conference paper
From Animals to Animats 13 (SAB 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8575))

Included in the following conference series:

Abstract

Dealing with high-dimensional input spaces, like visual input, is a challenging task for reinforcement learning (RL). Neuroevolution (NE), used for continuous RL problems, has to either reduce the problem dimensionality by (1) compressing the representation of the neural network controllers or (2) employing a pre-processor (compressor) that transforms the high-dimensional raw inputs into low-dimensional features. In this paper we extend the approach in [16]. The Max-Pooling Convolutional Neural Network (MPCNN) compressor is evolved online, maximizing the distances between normalized feature vectors computed from the images collected by the recurrent neural network (RNN) controllers during their evaluation in the environment. These two interleaved evolutionary searches are used to find MPCNN compressors and RNN controllers that drive a race car in the TORCS racing simulator using only visual input.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ciresan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J.: Deep big simple neural nets for handwritten digit recognition. Neural Computation 22(12), 3207–3220 (2010)

    Article  Google Scholar 

  2. Ciresan, D.C., Meier, U., Masci, J., Gambardella, L.M., Schmidhuber, J.: Flexible, high performance convolutional neural networks for image classification. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 1237–1242 (2011)

    Google Scholar 

  3. Cuccu, G., Luciw, M., Schmidhuber, J., Gomez, F.: Intrinsically motivated evolutionary search for vision-based reinforcement learning. In: Proceedings of the IEEE Conference on Development and Learning, and Epigenetic Robotics (2011)

    Google Scholar 

  4. D’Ambrosio, D.B., Stanley, K.O.: A novel generative encoding for exploiting neural network sensor and output geometry. In: Proceedings of the 9th Conference on Genetic and Evolutionary Computation (GECCO), pp. 974–981. ACM, New York (2007)

    Google Scholar 

  5. Fernández, F., Borrajo, D.: Two steps reinforcement learning. International Journal of Intelligent Systems 23(2), 213–245 (2008)

    Article  MATH  Google Scholar 

  6. Fukushima, K.: Neocognitron: A self-organizing neural network for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics 36(4), 193–202 (1980)

    Article  MATH  Google Scholar 

  7. Gauci, J., Stanley, K.: Generating large-scale neural networks through discovering geometric regularities. In: Proceedings of the Conference on Genetic and Evolutionary Computation (GECCO), pp. 997–1004. ACM (2007)

    Google Scholar 

  8. Gisslén, L., Luciw, M., Graziano, V., Schmidhuber, J.: Sequential constant size compressors for reinforcement learning. In: Schmidhuber, J., Thórisson, K.R., Looks, M. (eds.) AGI 2011. LNCS, vol. 6830, pp. 31–40. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Gomez, F.J., Schmidhuber, J., Miikkulainen, R.: Accelerated neural evolution through cooperatively coevolved synapses. Journal of Machine Learning Research 9, 937–965 (2008)

    MATH  MathSciNet  Google Scholar 

  10. Gruau, F.: Cellular encoding of genetic neural networks. Technical Report RR-92-21, Ecole Normale Superieure de Lyon, Institut IMAG, Lyon, France (1992)

    Google Scholar 

  11. Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Jodogne, S.R., Piater, J.H.: Closed-loop learning of visual control policies. Journal of Artificial Intelligence Research 28, 349–391 (2007)

    MATH  Google Scholar 

  13. Kitano, H.: Designing neural networks using genetic algorithms with graph generation system. Complex Systems 4, 461–476 (1990)

    MATH  Google Scholar 

  14. Koutník, J., Cuccu, G., Schmidhuber, J., Gomez, F.: Evolving large-scale neural networks for vision-based reinforcement learning. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), Amsterdam (2013)

    Google Scholar 

  15. Koutník, J., Gomez, F., Schmidhuber, J.: Evolving neural networks in compressed weight space. In: Proceedings of the Conference on Genetic and Evolutionary Computation, GECCO (2010)

    Google Scholar 

  16. Koutník, J., Schmidhuber, J., Gomez, F.: Evolving deep unsupervised convolutional networks for vision-based reinforcement learning. In: Proceedings of the 2014 Genetic and Evolutionary Computation Conference (GECCO). ACM Press (2014)

    Google Scholar 

  17. Lange, S., Riedmiller, M.: Deep auto-encoder neural networks in reinforcement learning. In: International Joint Conference on Neural Networks (IJCNN), Barcelona, Spain (2010)

    Google Scholar 

  18. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  19. Legenstein, R., Wilbert, N., Wiskott, L.: Reinforcement Learning on Slow Features of High-Dimensional Input Streams. PLoS Computational Biology 6(8) (2010)

    Google Scholar 

  20. Pierce, D., Kuipers, B.: Map learning with uninterpreted sensors and effectors. Artificial Intelligence 92, 169–229 (1997)

    Article  MATH  Google Scholar 

  21. Riedmiller, M., Lange, S., Voigtlaender, A.: Autonomous reinforcement learning on raw visual input data in a real world application. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN), Brisbane, Australia, pp. 1–8 (2012)

    Google Scholar 

  22. Scherer, D., Müller, A., Behnke, S.: Evaluation of pooling operations in convolutional architectures for object recognition. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010, Part III. LNCS, vol. 6354, pp. 92–101. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Schmidhuber, J.: Discovering neural nets with low Kolmogorov complexity and high generalization capability. Neural Networks 10(5), 857–873 (1997)

    Article  Google Scholar 

  24. Sutton, R.S., McAllester, D.A., Singh, S.P., Mansour, Y.: Policy gradient methods for reinforcement learning with function approximation. In: Advances in Neural Information Processing Systems 12 (NIPS), pp. 1057–1063 (1999)

    Google Scholar 

  25. Tesauro, G.: Practical issues in temporal difference learning. In: Lippman, D.S., Moody, J.E., Touretzky, D.S. (eds.) Advances in Neural Information Processing Systems 4 (NIPS), pp. 259–266. Morgan Kaufmann (1992)

    Google Scholar 

  26. Yao, X.: Evolving artificial neural networks. Proceedings of the IEEE 87(9), 1423–1447 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Koutník, J., Schmidhuber, J., Gomez, F. (2014). Online Evolution of Deep Convolutional Network for Vision-Based Reinforcement Learning. In: del Pobil, A.P., Chinellato, E., Martinez-Martin, E., Hallam, J., Cervera, E., Morales, A. (eds) From Animals to Animats 13. SAB 2014. Lecture Notes in Computer Science(), vol 8575. Springer, Cham. https://doi.org/10.1007/978-3-319-08864-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08864-8_25

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08863-1

  • Online ISBN: 978-3-319-08864-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics